










































































































































Finding the Multiplicative Inverse in GF(p):
• Easy to find the multiplicative inverse of an element in GF(p) for small values of p. 
• construct a multiplication table and the desired result can be read directly. 

• If a and b are relatively prime, then b has a multiplicative inverse modulo a.
• if gcd(a, b) = 1, then b has a multiplicative inverse modulo a

Ex: 
a = 1759, which is a prime number, and b = 550. 
The solution of the equation 1759x + 550y = d yields a value of y = 355.      b-1 = 355. 
To verify, calculate 550 * 355 mod 1759 = 195250 mod 1759 = 1.

• The extended Euclidean algorithm can be used to find a multiplicative inverse in Zn for any n. 
• If we apply the extended Euclidean algorithm to the equation nx + by = d, and the algorithm yields d = 1, then

y = b-1 in Zn .

Summary
• Construct a finite field of order p, where p is prime. 
• Defined GF(p) with the following properties.

1. GF(p) consists of p elements.
2. The binary operations + and * are defined over the set. 

• The operations of addition, subtraction, multiplication, and division can be performed without leaving the set.
• Each element of the set other than 0 has a multiplicative inverse, and division is performed by multiplication

by the multiplicative inverse.
• The elements  of  GF(p) are  the integers  {0,  1,...,p–1} and that  the arithmetic  operations are addition and

multiplication mod p.





























• This is the most general form of block cipher and can be used to define any reversible mapping between
plaintext and ciphertext.

• Feistel refers to this as the ideal block cipher, 
◦ it allows for the maximum number of possible encryption mappings from the plaintext block.
◦ a practical problem with the ideal block cipher. 

▪ If a small block size, such as n = 4, is used, then the system is equivalent to a classical substitution
cipher. 

• vulnerable to a statistical analysis of the plaintext. 
• If n is sufficiently large and an arbitrary reversible substitution between plaintext and ciphertext is allowed,

then the  statistical  characteristics  of  the  source  plaintext  are  masked to such  an  extent  that  this  type  of
cryptanalysis is infeasible.

• the key that determines the specific mapping from among all possible mappings. 
• straightforward method of defining the key, the required key length is (4 bits) * (16 rows) = 64 bits. 
• In general, for an n-bit ideal block cipher, the length of the key defined in this fashion is n * 2n bits.

◦ For a 64-bit block, which is a desirable length to thwart statistical attacks, the required key length is 64 *
264 = 270 ≈ 1021 bits.

• Feistel points out that what is needed is an approximation to the ideal block cipher system for large n, built up
out of components that are easily realizable 

The Feistel Cipher
• Feistel proposed that we can approximate the ideal block cipher by utilizing the concept of a product cipher, 

◦ the execution of two or more simple ciphers in sequence in such a way that the final result or product is
cryptographically stronger than any of the component ciphers. 

• to develop a block cipher with a key length of k bits and a block length of n bits, allowing a total of 2 k

possible transformations, rather than the 2n! Transformations available with the ideal block cipher.

• Feistel  proposed the use of a cipher that  alternates substitutions and permutations, where these terms are
defined as follows:
1. Substitution: Each  plaintext  element  or  group of  elements  is  uniquely  replaced  by  a  corresponding

ciphertext element or group of elements.
2. Permutation: A sequence of plaintext elements is replaced by a permutation of that sequence. That is, no

elements are added or deleted or replaced in the sequence, rather the order in which the elements appear
in the sequence is changed.

• Feistel’s is a practical application of a proposal by Claude Shannon to develop a product cipher that alternates
confusion and diffusion functions 

• Shannon’s  proposal  of  1945,  is  the  structure  used  by  a  number  of  significant  symmetric  block  ciphers
currently in use. 

• The  Feistel  structure  is  used  for  Triple  Data  Encryption  Algorithm  (TDEA),  which  is  one  of  the  two
encryption algorithms (along with AES), approved for general use by the National Institute of Standards and
Technology (NIST). 

• The Feistel structure is also used for several schemes for format-preserving encryption, 
• the Camellia block cipher is a Feistel structure; it is one of the possible symmetric ciphers in TLS and a

number of other Internet security protocols. 

DIFFUSION AND CONFUSION 
• The terms diffusion and confusion were introduced by Claude Shannon to capture the two basic building

blocks for any cryptographic system. 
• Shannon’s concern was to thwart cryptanalysis based on statistical analysis. 

Assume the attacker has some knowledge of the statistical characteristics of the plaintext. 
✗ For example, in a human-readable message in some language, the frequency distribution of the various letters

may be known. Or there may be words or phrases likely to appear in the message (probable words). 
✗ If  these statistics  are in  any way reflected in the ciphertext,  the cryptanalyst  may be able to deduce the

encryption key, part of the key, or at least a set of keys likely to contain the exact key. 
Shannon refers to as a strongly ideal cipher, all statistics of the ciphertext are independent of the particular key used. 

Shannon suggests two methods for frustrating statistical cryptanalysis: diffusion and confusion. 

• Diffusion, the statistical structure of the plaintext is dissipated into long-range statistics of the ciphertext. 



This is achieved by having each plaintext digit affect the value of many ciphertext digits; generally, this is equivalent to
having each ciphertext digit be affected by many plaintext digits. 

• To encrypt a message M = m1, m2, m3,.... of characters with an averaging operation: adding k successive
letters to get a ciphertext letter yn . 

In a binary block cipher, diffusion can be achieved by repeatedly performing some permutation on the data followed by
applying a function to that permutation; the effect is that bits from different positions in the original plaintext contribute
to a single bit of ciphertext. 
Every  block  cipher  involves  a  transformation  of  a  block  of  plaintext  into  a  block  of  ciphertext,  where  the
transformation depends on the key. 
The mechanism of diffusion seeks to make the statistical relationship between the plaintext and ciphertext as complex
as possible in order to thwart attempts to deduce the key. 

• Confusion  seeks  to  make  the  relationship  between  the  statistics  of  the  ciphertext  and  the  value  of  the
encryption key as complex as possible, again to thwart attempts to discover the key. 

• the way in which the key was used to produce that ciphertext is so complex as to make it difficult to deduce
the key.

• This is achieved by the use of a complex substitution algorithm. 

So successful are diffusion and confusion in capturing the essence of the desired attributes of a block cipher that they
have become the cornerstone of modern block cipher design.

FEISTEL CIPHER STRUCTURE:



The left-hand side depicts the encryption structure proposed by Feistel. 
• The inputs to the encryption algorithm are a plaintext block of length 2w bits and a key K.
• The plaintext block is divided into two halves, LE0 and RE0 . 
• The two halves of the data pass through n rounds of processing and then combine to produce the ciphertext

block. 
Each round i has as inputs LEi-1 and REi-1 derived from the previous round, as well as a subkey K i derived from the
overall K. 

• the subkeys Ki are different from K and from each other.
• 16 rounds are used, although any number of rounds could be implemented.
• All rounds have the same structure. 
• A substitution is performed on the left half of the data.
• This is done by applying a round function F to the right half of the data and then taking the exclusive-OR of

the output of that function and the left half of the data. 
• The round function has the same general structure for each round but is parameterized by the round subkey

Ki . 
• Another way to express this is to say that F is a function of right-half block of w bits and a subkey of y bits,

which produces an output value of length w bits: F(REi , Ki+1).

Following this substitution, a permutation is performed that consists of the interchange of the two halves of the data. 
This structure is a particular form of the substitution-permutation network (SPN) proposed by Shannon.

• The exact realization of a Feistel network depends on the choice of the following parameters and  design
features:
1. Block size: Larger block sizes mean greater security (all other things being equal) but reduced encryption/

decryption speed for a given algorithm. The greater security is achieved by greater diffusion. The new
AES uses a 128-bit block size.

2. Key size: Larger key size means greater security but may decrease encryption/ decryption speed. The
greater security is achieved by greater resistance to brute-force attacks and greater confusion. Key sizes of
128 bits has become a common size.

3. Number of rounds: The essence of the Feistel cipher is that a single round offers inadequate security but
that multiple rounds offer increasing security. A typical size is 16 rounds. 

4. Subkey generation algorithm: Greater complexity in this algorithm should lead to greater difficulty of
cryptanalysis.

5. Round function F: Greater complexity generally means greater resistance to cryptanalysis.

There are two other considerations in the design of a Feistel cipher:
1. Fast software encryption/decryption:   

◦ encryption is embedded in applications or utility functions in such a way as  to preclude a hardware
implementation. 

◦ the speed of execution of the algorithm becomes a concern.
2. Ease of analysis  : 

◦ make our algorithm as difficult as possible to cryptanalyze, there is great benefit in making the algorithm
easy to analyze. 

◦ if  the  algorithm  can  be  concisely  and  clearly  explained,  it  is  easier  to  analyze  that  algorithm  for
cryptanalytic vulnerabilities and therefore develop a higher level of assurance as to its strength. 
▪ DES, for example, does not have an easily analyzed functionality.

FEISTEL DECRYPTION ALGORITHM 
• The process of decryption with a Feistel cipher is essentially the same as the encryption process. 
• The rule is as follows: 

◦ Use the ciphertext as input to the algorithm, but use the subkeys Ki in reverse order. 
◦ use Kn in the first round, Kn-1 in the second round, and so on, until K 1 is used in the last round. 
◦ the encryption process going down the left-hand side and the decryption process going up the right-hand

side for a 16-round algorithm. 
◦ at every round, the intermediate value of the decryption process is equal to the corresponding value of the

encryption process with the two halves of the value swapped. 
• After the last iteration of the encryption process, the two halves of the output are swapped.
• The output of that round is the ciphertext. 
• Now take that ciphertext and use it as input to the same algorithm.
• The input to the first round is 32-bit swap of the output of the sixteenth round of the encryption process.

• the output of the first round of the decryption process is equal to a 32-bit swap of the input to the sixteenth
round of the encryption process. 



• The encryption process. 

• On the decryption side,

• The XOR has the following properties:

LD1 = RE15 and RD1 = LE15 . 
• The output of the first round of the decryption process is the 32-bit swap of the input to the sixteenth round of

the encryption. 

For the ith iteration of the encryption algorithm,

The  output  of  the  last  round  of  the  decryption  process  is  a  32-bit  swap  that  recovers  the  original  plaintext,
demonstrating the validity of the Feistel decryption process.

Example

• On the fifteenth round of encryption, corresponding to the second round of decryption. 

Suppose that the blocks at each stage are 32 bits (two 16-bit halves) and that the key size is 24 bits. 
Suppose  that  at  the  end  of  encryption  round  fourteen,  the  value  of  the  intermediate  block  (in  hexadecimal)  is
DE7F03A6. 

Then LE14 = DE7F and RE14 = 03A6.  value of K15 is 12DE52.
After round 15, LE15 = 03A6 and RE15 = F(03A6, 12DE52)  DE7F.⊕ DE7F.

D1 = LE15 

demonstrate that LD2 = RE14  and RD2 = LE14 
start with LD1 = F(03A6, 12DE52)  DE7F and RD⊕ DE7F. 1 = 03A6. 

Then, LD2 = 03A6 = RE14 and RD2 = F(03A6, 12DE52)  [F(03A6, 12DE52)  DE7F] = DE7F = LE⊕ DE7F. ⊕ DE7F. 14.

-------------------------------------------------------------------------------------------------------------------------------------------























Differential Propagation through Three Rounds of DES

                           

Linear Cryptanalysis :
• It is the more recent development 

• This attack is based on finding linear  approximations  to describe the transformations

performed in DES. 

• This method can find a DES key given 243  known plaintexts, as compared to247 chosen

plaintexts for differential cryptanalysis. I

• t may be easier to acquire known plaintext rather than chosen plaintext, leaves. 

• For a cipher with n -bit plaintext and ciphertext blocks and m -bit key, let the plaintext

block be labeled P[1], …P[n], the cipher text block C[1], .. C[n], and the key K[1], … ,

K[m] . Then define 



A[i, j, … , k] = A[i] ꚛA[j] ꚛ..  ꚛA[k]

• The objective of linear cryptanalysis is to find an effective linear equation of the form:

P[α1,α2…..,αa] ꚛ C[β1,β2,….,βb] = K[γ1,γ2,……γc]

(where x = 0 or 1; 1  ≤ a;b ≤ n; c  ≤ m ; and where the  α,β,γ  terms represent fixed, unique bit

locations) that holds with probability p≠0.5. 

• The further p is from 0.5, the more effective the equation. 

• Once a proposed relation is determined, the procedure is to compute the results of the

left-hand side of the preceding equation for a large number of plaintext–ciphertext pairs.

◦ If the result is 0 more than half the time, assume K[γ1,γ2,……γc]=0. 

◦ If it is 1 most of the time, assume  K[γ1,γ2,……γc]=1. 

• This gives us a linear equation on the key bits. 



Block Cipher Design Principles

• Three critical aspects of block cipher design: 
1. Number of rounds, 
2. Design of the function F and 
3. Key scheduling.

1. Number of Rounds:
• The greater the number of rounds, the more difficult it is to perform cryptanalysis, even for a

relatively weak F. 
• The number of rounds is chosen so that known cryptanalytic efforts require greater effort

than a simple brute-force key search attack. 
• This criterion was certainly used in the design of DES. 
• For 16-round DES, a differential  cryptanalysis  attack is slightly less efficient than brute

force:  The  differential  cryptanalysis  attack  requires  255.1 operations,  whereas  brute  force
requires 255 .

• If DES had 15 or fewer rounds, differential cryptanalysis would require less effort than a
brute-force key search.

• This criterion is attractive, because it makes it easy to judge the strength of an algorithm and
to compare different algorithms. 

• In the absence of a cryptanalytic breakthrough, the strength of any algorithm that satisfies
the criterion can be judged solely on key length.

2. Design of Function F:
• The  heart  of  a  Feistel  block  cipher  is  the  function  F,  which  provides  the  element  of

confusion in a Feistel cipher. 
• It must be difficult to “unscramble” the substitution performed by F. 
• F be nonlinear.
• The more nonlinear F, the more difficult any type of cryptanalysis will be.
• The more difficult it is to approximate F by a set of linear equations, the more nonlinear F is.
• Algorithm to have good avalanche properties. 

◦ a change in one bit of the input should produce a change in many bits of the output. 
◦ strict avalanche criterion (SAC)   

▪ states that any output bit j of an S-box should change with probability 1/2 when any
single input bit i is inverted for all i, j. 

▪ Although SAC is expressed in terms of S-boxes, a similar criterion could be applied
to F as a whole. 

• Bit independence criterion (BIC)  
◦ states that output bits j and k should change independently when any single input bit i is

inverted for all i, j, and k. 
• The SAC and BIC criteria appear to strengthen the effectiveness of the confusion function.

3. Key Schedule Algorithm:
• With any Feistel block cipher, the key is used to generate one subkey for each round. 
• To  select  subkeys  to  maximize  the  difficulty  of  deducing  individual  subkeys  and  the

difficulty of working back to the main key. 
• At minimum, the key schedule should guarantee key/ciphertext Strict Avalanche Criterion

and Bit Independence Criterion.



BLOCK CIPHER MODE OF OPERATION

• A block cipher takes a fixed-length block of text of length b bits and a key as input and produces a b-bit
block of ciphertext. 

• If the amount of plaintext to be encrypted is greater than b bits, then the block cipher can still be used by
breaking the plaintext up into b-bit blocks. 

• When multiple blocks of plaintext are encrypted using the same key, a number of security issues arise. 

• To apply a block cipher in a variety of applications, five modes of operation have been defined by NIST
(SP 800-38A).

• A mode of operation is a technique for enhancing the effect of a cryptographic algorithm or adapting the
algorithm for an application, such as applying a block cipher to a sequence of data blocks or a data
stream. 

• The five modes are intended to cover a wide variety of applications of encryption for which a block
cipher could be used. These modes are intended for use with any symmetric block cipher, including triple
DES and AES. 

1. Electronic Codebook:
• The simplest mode is the electronic codebook (ECB) mode, in which plaintext is handled one block at a

time and each block of plaintext is encrypted using the same key



• The term codebook is used because, for a given key, there is a unique ciphertext for every b-bit block of
plaintext.

• Imagine a gigantic codebook in which there is an entry for every possible b-bit plaintext pattern showing
its corresponding ciphertext. 

• For a message longer than b bits, the procedure is simply to break the message into b-bit blocks, padding
the last block if necessary. 

• Decryption is performed one block at a time, always using the same key. 
• the  plaintext  (padded  as  necessary)  consists  of  a  sequence  of  b-bit  blocks,  P1,  P2,  ...,  PN ;  the

corresponding sequence of ciphertext blocks is C1 , C2 ,... , CN . 
• Define ECB mode as follows.

• The ECB mode should be used only to secure messages shorter than a single block of underlying cipher
(i.e., 64 bits for 3DES and 128 bits for AES), such as to encrypt a secret key. 

• The most significant characteristic of ECB is that if the same b-bit block of plaintext appears more than
once in the message, it always produces the same ciphertext.

• For lengthy messages, the ECB mode may not be secure. 
• If the message is highly structured, it may be possible for a cryptanalyst to exploit these regularities.
• criteria and properties for evaluating and constructing block cipher modes of operation that are superior to

ECB:
1. Overhead  : The additional operations for the encryption and decryption operation when compared to

encrypting and decrypting in the ECB mode.
2. Error recovery:   The property that  an error  in  the ith ciphertext block is  inherited by only a few

plaintext blocks after which the mode resynchronizes.
3. Error propagation:   The property that an error in the ith ciphertext block is inherited by the ith and all

subsequent plaintext blocks. What is meant here is a bit error that occurs in the transmission of a
ciphertext block, not a computational error in the encryption of a plaintext block.

4. Diffusion:   How the plaintext statistics are reflected in the ciphertext. Low entropy plaintext blocks
should not be reflected in the ciphertext blocks. 

5. Security:   Whether or not the ciphertext blocks leak information about the plaintext blocks.

2. Cipher Block Chaining Mode
• A technique in which the same plaintext block, if repeated, produces different ciphertext blocks.
• The input  to  the  encryption  algorithm is  the  XOR of  the  current  plaintext  block  and  the  preceding

ciphertext block; the same key is used for each block. 
◦ chained together the processing of the sequence of plaintext blocks. 



• The input to the encryption function for each plaintext block bears no fixed relationship to the plaintext
block. Therefore, repeating patterns of b bits are not exposed. 

• As with the ECB mode, the CBC mode requires that the last block be padded to a full b bits if it is a
partial block.

• Define CBC mode as

• Decryption
◦ Each cipher block is passed through the decryption algorithm.
◦ The result is XORed with the preceding ciphertext block to produce the plaintext block
◦ To produce the first block of ciphertext, an initialization vector (IV) is XORed with the first block of

plaintext.
◦ The IV is XORed with the output of the decryption algorithm to recover the first block of plaintext. 

▪ The IV is a data block that is the same size as the cipher block.
▪ The IV must be known to both the sender and receiver but be unpredictable by a third party. 

• For any given plaintext, it must not be possible to predict the IV that will be associated to the plaintext in
advance of the generation of the IV. 

• For maximum security, the IV should be protected against unauthorized changes. 
• This could be done by sending the IV using ECB encryption.

• the specific choice of IV - SP 800-38A recommends two possible methods: 
1. The  first  method  is  to  apply  the  encryption  function,  under  the  same  key  that  is  used  for  the

encryption of the plaintext, to a nonce. 
◦ The nonce must be a data block that is unique to each execution of the encryption operation.
◦ For example, the nonce may be a counter, a timestamp, or a message number. 

2. The second method is to generate a random data block using a random number generator.

Advantages:
• It is an appropriate mode for encrypting messages of length greater than b bits. 
• addition to its use to achieve confidentiality, the CBC mode can be used for authentication.



3.   Cipher Feedback(CFB):  
 It is assumed that the unit of transmission is bits; a common value is . As with

CBC, the units of plaintext are chained together, so that the ciphertext of any
plaintext unit is a function of all the preceding plaintext. 

 In this case, rather than blocks of bits, the plaintext is divided into segments of
bits.

 The message is treated as a stream of bits that is added to the output of the block
cipher.

 The result is feedback for the next stage.

                      

                                          Figure: s bit Cipher Feedback mode(CFB)

Encryption:
• The  input  to  the  encryption  function  is  a  b-bit  shift  register  initially  set  to  some

initialization vector (IV). 
• The leftmost s bits of the output of the encryption function are XORed with the first

segment  of  plaintext  P1  to  produce  the  first  unit  of  ciphertext  C,  which  is  then
transmitted.  

• The contents  of  the  shift  register  are  shifted  left  by s  bits,  and C1 is  placed  in  the
rightmost s bits of the shift register. 

• This process continues until all plaintext units have been encrypted.

 



Decryption:
• The same scheme is used, except that the received ciphertext unit is XORed with the output of

the encryption function to produce the plaintext unit.  

Let MSBs(X) be defined as the most significant bits of X. Then

Define CFB:

Advantages:
 Appropriate when data arrives in bits/bytes.
 It is the most common stream mode.

Disadvantages:
 The need to stall while you do block encryption after every n-bits.
 Note that the block cipher is used in encryption mode at both ends.
 Errors propagate for several blocks after the error.

4.   Output Feedback Mode(OFB):  
 It is similar in the structure of CFB.
 It is the output of the encryption function that is fed back to the shift register in OFB, 

whereas in CFB, the ciphertext unit is fed back to the shift register.
 The difference is that the OFB mode operates on full blocks of plaintext and ciphertext, 

not on an s-bit subset.

 



 OFB has the structure of a typical stream cipher, because the cipher generates a stream 
of bits as a function of an initial value and a key, and that stream of bits is XORed with 
the plaintext bits. 

 The generated stream that is XORed with the plaintext is itself independent of the 
plaintext

 Encryption can be expressed as

 D  ecryption

Define OFB:

• The OFB mode requires an initialization vector.
• In the case of OFB, the IV must be a nonce; 

◦ that is, the IV must be unique to each execution of the encryption operation. 
• The reason for this is that the sequence of encryption output blocks, depends only on the

key and the IV and does not depend on the plaintext. 
• Therefore, for a given key and IV, the stream of output bits used to XOR with the stream

of plaintext bits is fixed. 
• If two different messages had an identical block of plaintext in the identical position,

then an attacker would be able to determine that portion of the stream.

 



Advantages:
 Bit errors in transmission do not propagated.

o Ex: 
 If a bit error occurs in , only the recovered value of is affected; 

subsequent plaintext units are not corrupted.
Disadvantages:

 More vulnerable to message stream modification attack.

5.   Counter Mode(CTR):  
 The counter equal to the plaintext block size is used.
 The counter value must be different for each plaintext block that is encrypted.
 The counter is initialize to some values, then will be incremented by one for each 

subsequent block.(modulo 2b, b is block size)
Encryption:

 The counter is encrypted and XORed with the plaintext block to produce the ciphertext 
block.

 There is no chaining.
Decryption:

 The same sequence of counter values is used, with each encrypted counter XORed with 
the ciphertext block to recover the corresponding plaintext block.

 the initial counter value must be made available for decryption. 

 



Define CTR:

• The initial counter value must be a nonce; 
◦ that is, must be different for all of the messages encrypted using the same key. 

• All values across all messages must be unique.
• a counter value is used multiple times, then the confidentiality of all  of the plaintext

blocks corresponding to that counter value may be compromised 
• To ensure the uniqueness of counter values is to continue to increment the counter value

by 1 across messages.
• That is, the first counter value of the each message is one more than the last counter

value of the preceding message.

Advantages:
 Hardware efficiency 

o Encryption (or decryption)  in  CTR mode can be done in parallel  on multiple
blocks of plaintext or ciphertext. 

o The throughput is only limited by the amount of parallelism that is achieved.

 Software efficiency
o opportunities for parallel execution in CTR mode, 
o processors that support parallel features, such as aggressive pipelining, multiple

instruction  dispatch  per  clock  cycle,  a  large  number  of  registers,  and  SIMD
instructions, can be effectively utilized.

 Preprocessing 
o preprocessing can be used to prepare the output of the encryption boxes that feed

into the XOR functions, 
 Random access

o The  th  block  of  plaintext  or  ciphertext  can  be  processed  in  random-access
fashion.

 Provable security
o CTR is at least as secure as the other modes

 Simplicity
o CTR mode requires only the implementation of the encryption algorithm and not

the decryption algorithm
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• The input to the encryption and decryption algorithms is a single 128-bit block.
• This block is depicted as a square matrix of bytes. 
• This  block  is  copied  into  the  State  array,  which  is  modified  at  each  stage  of

encryption or decryption. 
• After the final stage, State is copied to an output matrix. 

• Similarly, the key is depicted as a square matrix of bytes.
• This key is then expanded into an array of key schedule words. 

• Each word is four bytes, and the total key schedule is 44 words for the 128-bit key.
• Note that the ordering of bytes within a matrix is by column. 

◦ Example, the first four bytes of a 128-bit plaintext input to the encryption cipher
occupy the first column of the in matrix, the second four bytes occupy the second
column, and so on. 

◦ Similarly, the first four bytes of the expanded key, which form a word, occupy
the first column of the w matrix.

Comments about the overall AES structure.
1. One noteworthy feature of this structure is that it is not a Feistel structure.

AES instead processes the entire data block as a single matrix during each round
using substitutions and permutation.
2. The key that is provided as input is expanded into an array of forty-four 32-bit words,
w[i]. Four distinct words (128 bits) serve as a round key for each round
3. Four different stages are used, one of permutation and three of substitution:
• Substitute bytes: Uses an S-box to perform a byte-by-byte substitution of the block
• ShiftRows: A simple permutation
• MixColumns: A substitution that makes use of arithmetic over
• AddRoundKey: A simple bitwise XOR of the current block with a portion of the expanded
key
4. The structure is quite simple. For both encryption and decryption, the cipher begins with
an AddRoundKey stage, followed by nine rounds that each includes all four stages, followed
by a tenth round of three stages.



5. Only the AddRoundKey stage makes use of the key.
• For this reason, the cipher begins and ends with an AddRoundKey stage. 
• Any  other  stage,  applied  at  the  beginning  or  end,  is  reversible  without

knowledge of the key and so would add no security.
6.  The  AddRoundKey  stage  is  a  form  of  Vernam  cipher  and  by  itself  would  not  be
formidable.

• The other three stages together provide confusion, diffusion, and nonlinearity, but by
themselves would provide no security because they do not use the key.We can view
the cipher as alternating operations of XOR encryption (AddRoundKey) of a block,
followed  by  scrambling  of  the  block  (the  other  three  stages),  followed  by  XOR
encryption, and so on.This scheme is both efficient and highly secure.

7. Each stage is easily reversible.
• For the Substitute Byte, ShiftRows, and MixColumns stages, an inverse function is

used in the decryption algorithm. 
• For the AddRoundKey stage, the inverse is achieved by XORing the same round key

to the block, using the result that .
8. The decryption algorithm makes use of the expanded key in reverse order.

• However, the decryption algorithm is not identical to the encryption algorithm. 
• This is a consequence of the particular structure of AES.

9. Once it is established that all four stages are reversible, it is easy to verify that decryption does
recover the plaintext.

• Encryption and decryption going in opposite vertical directions. 



• At each horizontal point (e.g., the dashed line in the figure), State is the same for both
encryption and decryption.

10. The final round of both encryption and decryption consists of only three stages.
• Again, this is a consequence of the particular structure of AES and is required to

make the cipher reversible.

AES TRANSFORMATION FUNCTIONS
Four  transformations  used  in  AES.  For  each  stage,  we  describe  the  forward  (encryption)
algorithm, the inverse (decryption) algorithm, and the rationale for the stage.

1. Substitute Bytes Transformation
FORWARD AND INVERSE TRANSFORMATIONS 
a) The forward substitute byte transformation, called SubBytes, is a simple table lookup.

• AES defines a matrix of byte values, called an S-box, that contains a permutation of
all possible 256 8-bit values. 



• Each individual byte of State is mapped into a new byte in the following way: 
◦ The leftmost 4 bits of the byte are used as a row value and the rightmost 4 bits are

used as a column value. 
◦ These row and column values serve as indexes into the S-box to select a unique

8-bit output value.
▪ Ex: The hexadecimal value3 {95} references row 9, column 5  of the S-box,

which contains the value {2A} . Accordingly, the value {95}  is mapped into
the value {2A} .

Example of the SubBytes transformation:

                     

Construction of S-Box:
1. Initialize the S-box with the byte values in ascending sequence row by row. The first row
contains {00}, {01}, {02}, ……, {0F} ; the second row contains {10}, {11}, etc.; and so on.
Thus, the value of the byte at row y , column x is {yx} .
 2. Map each byte in the S-box to its multiplicative inverse in the finite field  GF(2)8 ; the
value {00} is mapped to itself.
 3. Consider that each byte in the S-box consists of 8 bits labelled (b7, b6, b5, b4, b3, b2, b1,
b0) . Apply the following transformation to each bit of each byte in the S-box:

where is the ith bit of byte c with the value {63} ; that is, (c7c6c5c4c3c2c1c0) =(01100011) .

• The prime(‘) indicates that the variable is to be updated by the value on the right. 
• The AES standard depicts this transformation in matrix form as follows.

                         
• Each element in the product matrix is the bitwise XOR of products of elements of

one row and one column. 
• Furthermore, the final addition is a bitwise XOR. 

◦ the bitwise XOR is addition in GF(28) .

Example, consider the input value{95}  
• The multiplicative inverse in GF(28)is {95}-1 = {8A} , which is 10001010 in binary. 



                           
The result is {2A} , which should appear in row {09} column {05} of the S-box.
This is verified by checking Table 

b) The inverse substitute byte transformation, called InvSubBytes, makes use of the 
inverse S-box 

                     
Example, that the input {2A} produces the output {95} , and the input {95} to the S-box 
produces {2A} . 
The inverse S-box is constructed by applying the inverse of the transformation in Equation 
followed by taking the multiplicative inverse in GF(28) .
The inverse transformation is

where byte d = {05} , or 00000101.

Transformation as follows.

                            

• InvSubBytes  is  the  inverse  of  SubBytes,  label  the  matrices  inSubBytes  and
InvSubBytes as X and B, respectively, and the vector versions of constants c and d as
C and D, respectively. 



• For some 8-bit vector B Equation (5.2) becomes B’ = XB  C .
• Need to show that Y(XB  C)  D=B. 
• To multiply out, we must show YXB  YC  D=B.  This becomes

                             

                             

YX equals the identity matrix, and the YC=D ,so that YC  D equals the null vector.

RATIONALE  
• The S-box is designed to be resistant to known cryptanalytic attacks. 
• The nonlinearity is due to the use of the multiplicative inverse. 
• In addition, the constant in Equation was chosen so that the S-box has no fixed points

[S-box(a) = a] and no “opposite fixed points” [S-box(a) = a] , where a- is the bitwise
complement of a .

2. ShiftRows Transformation
FORWARD AND INVERSE TRANSFORMATIONS 
a) The forward shift row transformation, called ShiftRows, 

• The first row of State is not altered. For the second row, a 1-byte circular left shift is
performed. For the third row, a 2-byte circular left shift is performed. 

• For the fourth row, a 3-byte circular left shift is performed. 



• The following is an example of ShiftRows.

                         

b) The inverse shift row transformation, called InvShiftRows, 
• performs the circular hifts in the opposite direction for each of the last three rows,

with a 1-byte circular right shift for the second row, and so on.

RATIONALE 
• The shift row transformation is more substantial than it may first appear.
• This is because the State, as well as the cipher input and output, is treated as an array

of four 4-byte columns. 
• Thus, on encryption, the first 4 bytes of the plaintext are copied to the first column of

State, and so on. 
• Furthermore, as will be seen, the round key is applied to State column by column.
• Thus, a row shift moves an individual byte from one column to another, which is a

linear distance of a multiple of 4 bytes. 
• The transformation ensures that the 4 bytes of one column are spread out to four

different columns.

3. MixColumns Transformation
FORWARD AND INVERSE TRANSFORMATIONS 
a) The forward mix column transformation, called MixColumns, 

• operates on each column individually. 
• Each byte of a column is mapped into a new value that is a function of all four bytes

in that column. 
• The transformation can be defined by the following matrix multiplication on State 



                  

• Each element in the product matrix is the sum of products of elements of one row and
one column. 

• In this case, the individual additions and multiplications are performed in GF(28). 
• The MixColumns transformation on a single column of State can be expressed as

                                   

Example of MixColumns:

                       

b)  The  inverse  mix  column transformation,  called  InvMixColumns,  is  defined  by  the
following matrix multiplication:

                  

It is not immediately clear that Equation (5.5) is the inverse of Equation (5.3).
Need to show

                             
which is equivalent to showing

                       

• That is, the inverse transformation matrix times the forward transformation matrix
equals the identity matrix. 

• To verify the first column of Equation (5.6), need to show
({0E}.{02}) {0B}  {0D}  ({09}.{03}) = {01}
({09}.{02}) {0E} {0B}  ({0D}.{03}) = {00}
({0D}.{02}) {09} {0E}  ({0B}.{03}) = {00}



({0B}.{02})  {0D} {09}  ({0E}.{03}) = {00}

For the first equation, 
{0E} .{02} = 00011100 and {09} .{03} = {09}  ({09} .{02}) = 00001001 00010010 =
0001101

• The other equations can be similarly verified.
• The  AES  document  describes  another  way  of  characterizing  the  MixColumns

transformation, which is in terms of polynomial arithmetic. 
• In the standard, MixColumns is defined by considering each column of State to be a

four-term polynomial with coefficients in GF(28). 
• Each column is multiplied modulo (x4+1) by the fixed polynomial a(x) , given by

                                

RATIONALE 
• The coefficients  of  the matrix  in  Equation  (5.3)  are  based  on a  linear  code  with

maximal  distance  between code words,  which  ensures  a  good mixing among the
bytes of each column. 

• The mix column transformation combined with the shift row transformation ensures
that after a few rounds all output bits depend on all input bits. 

• In addition, the choice of coefficients in MixColumns, which are all {01},{02} or
{03}, was influenced by implementation considerations. 

• Multiplication  by  these  coefficients  involves  at  most  a  shift  and  an  XOR.  The
coefficients in InvMixColumns are more formidable to implement. 

4. Addroundkey Transformation:
FORWARD AND INVERSE TRANSFORMATIONS 
a) In the forward add round key transformation, called AddRoundKey, the 128 bits of State
are bitwise XORed with the 128 bits of the round key. 

• The operation is viewed as a columnwise operation between the 4 bytes of a State
column  and  one  word  of  the  round  key;  it  can  also  be  viewed  as  a  byte-level
operation. 

• Example of AddRoundKey:



                          

• The first matrix is State, and the second matrix is the round key. 

b) The inverse add round key transformation:
• Identical to the forward add round key transformation, because the XOR operation is

its own inverse.

RATIONALE :
• The add round key transformation is as simple as possible and affects every bit of

State. 
• The complexity of the round key expansion, plus the complexity of the other stages

of AES, ensure security.

AES KEY EXPANSION
Key Expansion Algorithm

• The AES key expansion algorithm takes  as  input  a  four-word (16-byte)  key and
produces a linear array of 44 words (176 bytes).

• This  is  sufficient  to  provide a four-word round key for the initial  AddRoundKey
stage and each of the 10 rounds of the cipher.

• Pseudocode describes the expansion. 

• The key is copied into the first four words of the expanded key.
• The remainder of the expanded key is filled in four words at a time. 
• Each added word w[i] depends on the immediately preceding word, w[i-1] , and the

word four positions back , w[i-4], . 
• In three out of four cases, a simple XOR is used. 
• For a word whose position in the w array is a multiple of 4, a more complex function

is used.



The generation of the expanded key, using the symbol g to represent that complex function. 

AES Key Expansion

The function g consists of the following subfunctions.
1. RotWord performs a one-byte circular left shift on a word.

• This means that an input word [B0, B1, B2, B3] is transformed into [B1, B2, B3,
B0] .

2. SubWord performs a byte substitution on each byte of its input word, using the S-box.
3. The result of steps 1 and 2 is XORed with a round constant, Rcon[j] .

• The round constant is a word in which the three rightmost bytes are always 0.
• Thus, the effect of an XOR of a word with Rcon is to only perform an XOR on the

leftmost byte of the word.
• The round constant is different for each round and is defined as Rcon[j] = (RC[j], 0,

0, 0),with RC[1] = 1 RC[j]  = 2 .  RC[j-1] , and with multiplication defined over the
field GF(28).

The values of RC[j] in hexadecimal are

                    

• Example, suppose that the round key for round 8 is 
EA D2 73 21 B5 8D BA D2 31 2B F5 60 7F 8D 29 2F

Then the first 4 bytes (first column) of the round key for round 9 are calculated as follows:

              



Rationale
• The Rijndael  developers  designed the  expansion key algorithm to be  resistant  to

known cryptanalytic attacks. 
• The  inclusion  of  a  round-dependent  round  constant  eliminates  the  symmetry,  or

similarity, between the ways in which round keys are generated in different rounds. 

Criteria:
• Knowledge of a part of the cipher key or round key does not enable calculation of

many other round-key bits.
• An invertible transformation  [i.e., knowledge of any  Nk consecutive words of the

expanded  key  enables  regeneration  the  entire  expanded  key  (Nk  =  key  size  in
words)].

• Speed on a wide range of processors.
• Usage of round constants to eliminate symmetries.
• Diffusion of cipher key differences into the round keys; that is, each key bit affects

many round key bits.
• Enough nonlinearity to prohibit the full determination of round key differences from

cipher key differences only.
• Simplicity of description.

Equivalent Inverse Cipher
• The AES decryption cipher is not identical to the encryption cipher. 
• That  is,  the  sequence  of  transformations  for  decryption  differs  from  that  for

encryption, although the form of the key schedules for encryption and decryption is
the same. 

• This has the disadvantage that two separate software or firmware modules are needed
for applications that require both encryption and decryption.

• There is,  however,  an equivalent  version of the decryption algorithm that has the
same structure as the encryption algorithm.

• The equivalent version has the same sequence of transformations as the encryption
algorithm (with transformations replaced by their inverses). 

• To achieve this equivalence, a change in key schedule is needed.

• An  encryption  round  has  the  structure  SubBytes,  ShiftRows,  MixColumns,
AddRoundKey. 

• The  standard  decryption  round  has  the  structure  InvShiftRows,  InvSubBytes,
AddRoundKey, InvMixColumns. 

• Thus, the first two stages of the decryption round need to be interchanged, and the
second two stages of the decryption round need to be interchanged.

INTERCHANGING INVSHIFTROWS AND INVSUBBYTES 
• InvShiftRows affects the sequence of bytes in State but does not alter byte contents

and does not depend on byte contents to perform its transformation. 
• InvSubBytes affects the contents of bytes in State but does not alter byte sequence

and does not depend on byte sequence to perform its transformation. 
• Thus, these two operations commute and can be interchanged.For a given State ,

InvShiftRows [InvSubBytes (Si)] = InvSubBytes [InvShiftRows (Si)]



INTERCHANGING ADDROUNDKEY AND INVMIXCOLUMNS 
• The transformations Add- RoundKey and InvMixColumns do not alter the sequence

of bytes in State. 
• If  we  view  the  key  as  a  sequence  of  words,  then  both  AddRoundKey  and

InvMixColumns operate on State one column at a time.
• These two operations are linear with respect to the column input.That is, for a given

State and a given round key ,

InvMixColumns (Si wj) = [InvMixColumns (Si)]  [InvMixColumns (wj)]

• the first column of State Si is the sequence (y0, y1, y2, y3) and the first column of the
round key wj is (k0, k1, k2, k3) . 

• Show

              
Demonstrate that for the first column entry. 
Show

                

.



• can interchange AddRoundKey and InvMixColumns,  provided that  we first  apply
InvMixColumns to the round key. 

• Note that we do not need to apply InvMixColumns to the round key for the input to
the  first  AddRoundKey transformation  (preceding  the  first  round) nor  to  the  last
AddRoundKey transformation (in round 10).

• This is because these two AddRoundKey transformations are not interchanged with
InvMixColumns to produce the equivalent decryption algorithm.

Implementation Aspects
For efficient implementation on 8-bit processors, typical for current smart cards, and on 32-
bit processors, typical for PCs.

8-BIT PROCESSOR 
• AES can be implemented very efficiently on an 8-bit processor. 
• AddRoundKey is a bytewise XOR operation. 
• ShiftRows is a simple byte-shifting operation. 
• SubBytes operates at the byte level and only requires a table of 256 bytes.

The transformation MixColumns requires matrix multiplication in the field
GF(28), which means that all operations are carried out on bytes. MixColumns only requires
multiplication by {02} and {03}, which, as we have seen, involved simple shifts, conditional
XORs, and XORs. This can be implemented in a more efficient way that eliminates the shifts
and  conditional  XORs.  Equation  set  (5.4)  shows  the  equations  for  the  MixColumns
transformation on a single column. Using the identity  {03}.  x  =  ({02}.  x)   x, we can
rewrite Equation set (5.4) as follows.

            
Equation set (5.9) is verified by expanding and eliminating terms.

The multiplication by{02} involves a shift and a conditional XOR. Such an implementation
may be vulnerable  to a timing attack  of the sort  .To counter  this  attack  and to increase
processing efficiency at the cost of some storage, the multiplication can be replaced by a
table lookup. Define the 256-byte table X2, such that X2[i] = {02}.i .Then Equation set (5.9)
can be rewritten as

                                   
                             
32-BIT PROCESSOR 

The implementation described in the preceding subsection uses only 8-bit operations.
For a 32-bit processor, a more efficient implementation can be achieved if operations are
defined on 32-bit words. To show this, we first define the four transformations of a round in



algebraic form. Suppose we begin with a  State matrix consisting of elements  ai,  j and a
round-key matrix consisting of elements ki, j .
Then the transformations can be expressed as follows.

                    
In the ShiftRows equation, the column indices are taken mod 4. We can combine all of these
expressions into a single equation:

                     
In the second equation, we are expressing the matrix multiplication as a linear combination 
of vectors. 
We define four 256-word (1024-byte) tables as follows.

                
Thus, each table takes as input a byte value and produces a column vector (a 32-bit word)
that is a function of the S-box entry for that byte value. These tables can be calculated in
advance.
We can define a round function operating on a column in the following fashion.

As a result,  an implementation  based on the preceding equation requires only four table
lookups  and  four  XORs  per  column  per  round,  plus  4  Kbytes  to  store  the  table.The
developers of Rijndael believe that this compact, efficient implementation was probably one
of the most important factors in the selection of Rijndael for AES.







PSEUDORANDOM NUMBER GENERATORS
• Two types of algorithms for PRNGs.

◦ Linear Congruential Generators  
◦ Blum Blum Shub Generator:  

a) Linear Congruential Generators
• An algorithm first proposed by Lehmer which is known as the linear congruential method.
• The algorithm is parameterized with four numbers, as follows:

• The sequence of random numbers {Xn} is obtained via the following iterative equation:
Xn + 1 = (aXn + c) mod m

• If m, a, c, and X0 are integers, then this technique will produce a sequence of integers with each integer in the
range  0 ≤ Xn < m

Example, 
i)  a = c = 1. The sequence produced is obviously not satisfactory. 
ii) a = 7, c = 0, m = 32, and X0 = 1. 
This generates the sequence {7, 17, 23, 1, 7, etc.}, which is also clearly unsatisfactory. 
Of the 32 possible values, only four are used; thus, the sequence is said to have a period of 4. 
iii) the value of a to 5, then the sequence is {5, 25, 29, 17, 21, 9, 13, 1, 5, etc. }, which increases the period to 8.

A common criterion is that m be nearly equal to the maximum representable nonnegative integer for a given computer.
Thus, a value of m near to or equal to 231 is typically chosen.

Three tests to be used in evaluating a random number generator:
• T1 : The function should be a full-period generating function. That is, the function should generate all the

numbers from 0 through m - 1 before repeating.
• T2 : The generated sequence should appear random.
• T3 : The function should implement efficiently with 32-bit arithmetic.

• With appropriate values of a, c, and m, these three tests can be passed.
• For 32-bit arithmetic, a convenient prime value of m is 231 - 1. Thus, the generating function becomes

Xn + 1 = (aXn) mod (231 – 1)

• The strength of the linear congruential algorithm   is that if the multiplier and modulus are properly chosen, the
resulting sequence of numbers will be statistically indistinguishable from a sequence drawn at random (but
without replacement) from the set 1, 2, c , m – 1

• Disadvantage:  
◦ If an opponent knows that the linear congruential algorithm is being used and if the parameters are known

(e.g., a = 7 5 , c = 0, m = 2 31 - 1), then once a single number is discovered, all subsequent numbers are
known.

• To make the actual sequence used nonreproducible, so that knowledge of part of the sequence on the part of an
opponent is insufficient to determine future elements of the sequence. This goal can be achieved in a number
of ways. 
◦ Using an internal system clock to modify the random number stream. 

▪ One way to use the clock would be to restart the sequence after every N numbers using the current
clock value (mod m) as the new seed. 

▪ Another way would be simply to add the current clock value to each random number (mod m).

b) Blum Blum Shub Generator:
• A popular approach to generating secure pseudorandom numbers is known as the Blum Blum Shub (BBS)

generator, named for its developers.
• It has perhaps the strongest public proof of its cryptographic strength of any purpose-built algorithm. The

procedure is as follows. 
• First, choose two large prime numbers, p and q, that both have a remainder of 3 when divided by 4. 

p ≡ q ≡ 3(mod 4)
(p mod 4) = (q mod 4) = 3. 



Example:
• the prime numbers 7 and 11 satisfy 7 ≡ 11 ≡ 3(mod 4).
• Let n = p * q. 
• Next, choose a random number s, such that s is relatively prime to n; this is equivalent to saying that neither p

nor q is a factor of s. 

Then the BBS generator produces a sequence of bits Bi according to the following algorithm:

• the least significant bit is taken at each iteration. 

• n = 192649 = 383 * 503, and the seed s = 101355.

• The BBS is referred to as a cryptographically secure pseudorandom bit generator (CSPRBG). 
• A CSPRBG is defined as one that passes the next-bit test

◦ A pseudorandom bit generator is said to pass the next-bit test if there is not a polynomial-time algorithm
that,  on input of the first  k bits  of an output sequence,  can predict  the (k + 1)st  bit  with probability
significantly greater than 1/2. 

◦ In other words, given the first k bits of the sequence, there is not a practical algorithm that can even allow
you to state that the next bit will be 1 (or 0) with probability greater than 1/2. 

◦ For all practical purposes, the sequence is unpredictable. 

• The security of BBS is based on the difficulty of factoring n. 
◦ Given n, to determine its two prime factors p and q.



The RC4 Algorithm:
RC4 is a stream cipher designed in 1987 by Ron Rivest for RSA Security. It is a variable key size
stream cipher with byte-oriented operations.

 The algorithm is based on the use of a random permutation. Eight to sixteen machine
operations are required per output byte, and the cipher can be expected to run very quickly in
software.

 RC4 is used in the Secure Sockets Layer/Transport Layer Security (SSL/TLS) standards
that      have      been      defined      for      communication between Web browsers and servers.

 It is also used in the Wired Equivalent Privacy (WEP) protocol and the newer WiFi Protected
Access (WPA) protocol. RC4 was kept as a trade secret by RSA Security.

 The RC4 algorithm is remarkably simple and quite easy to explain. A vari- able length
key of from 1 to 256 bytes (8 to 2048 bits) is used to initialize a 256-byte state vector S,
with elements S[0], S[1], Á , S[255].

 At all times, S contains a permutation of all 8-bit numbers from 0 through 255. For
encryption and decryption, a byte k (see Figure 7.5) is generated from S by selecting one of
the 255 entries in a systematic fashion.

 As each value of k is generated, the entries in S are once again permuted.

Initialization of S
• To begin, the entries of S are set equal to the values from 0 through 255 in ascending order;

that is, S[0] = 0, S[1] = 1, Á , S[255] = 255 .
• A temporary vector, T, is also  created. If the length of the key K is 256 bytes,   then T is

transferred to T.
• Otherwise,     for a key of length keylen bytes,     the first     keylen     elements of T are copied

from K, and then K is repeated as many times as necessary to fill out T. These preliminary
operations can be summarized as

•Next we use T to produce the initial permutation of S. 
•This involves starting with S[0] and going through to S[255], and for each S[i], swapping S[i]
with another byte in S according to a scheme dictated by T[i]:

/* Initial Permutation of S */
j = 0;
for i = 0 to 255 do

j = (j + S[i] + T[i]) mod 256;
Swap (S[i], S[j]);

• Because the only operation on S is a swap, the only effect is a permutation. 
• S still contains all the numbers from 0 through 255.

Stream Generation
• Once the S vector is initialized, the input key is no longer used. 



• Stream generation involves  cycling  through  all  the  elements of  S[i],  and  for  each  S[i],
swapping S[i] with another byte in S according to the current configuration of S.

• After S[255] is reached, the process continues, starting over again at S[0]:

/* Stream Generation */ 
i, j = 0;
while (true)

i = (i + 1) mod 256;
j = (j + S[i]) mod 256;
Swap (S[i], S[j]);
t = (S[i] + S[j]) mod 256; 
k = S[t];

• To encrypt, XOR the value k with the next byte of plaintext. 
• To decrypt, XOR the value k with the next byte of ciphertext.

RC4 logic

Strength of RC4
 The authors demonstrate that the WEP protocol, intended to provide confidentiality on 802.11

wireless LAN networks, is vulnerable to a particular attack approach.
 In essence, the problem is not with RC4 itself but the way in which keys are generated for

use as input to RC4.
 This particular problem does not appear to be relevant to other applications using RC4   and

can be remedied in WEP by changing the way in which keys are generated.
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• For each end system or user, there is a unique master key that it shares with the key distribution center
• [N(N - 1)]/2 session keys are needed at any one time
• only N master keys are required, one for each entity
• Master keys can be distributed in some non-cryptographic way, such as physical delivery.

A Key Distribution Scenario:
The key distribution concept can be deployed in a number of ways.

• The scenario assumes that each user shares a unique master key with the key distribution center (KDC).

• Example:  
◦ user A wishes to establish a logical connection with B and requires a one-time session key to protect the

data transmitted over the connection. 
◦ A has a master key, Ka, known only to itself and the KDC; similarly, B shares the master key Kb with the

KDC. 
• The following steps occur.

1. A issues a request to the KDC for a session key to protect a logical connection to B. 
• The message includes the identity of A and B and a unique identifier, N1,for this transaction, which we

refer to as a nonce. 
◦ The nonce may be a timestamp, a counter, or a random number; the minimum requirement is that

it differs with each request. 
◦ Also, to prevent masquerade, it should be difficult for an opponent to guess the nonce. Thus, a

random number is a good choice for a nonce.
2. The KDC responds with a message encrypted using Ka. 

• A is the only one who can successfully read the message, and A knows that it originated at the KDC.
The message includes two items intended for A:
 The one-time session key, Ks, to be used for the session
 The original request message, including the nonce, to enable A to match this response with the

appropriate request.
➔ Thus, A can verify that its original request was not altered before reception by the KDC

and, because of the nonce, that this is not a replay of some previous request. 

           In addition, the message includes two items intended for B:
 The one-time session key, Ks , to be used for the session
 An identifier of A (e.g., its network address), IDA

• These last two items are encrypted with Kb (the master key that the KDC shares with B). 
• They are to be sent to B to establish the connection and prove A’s identity.



3. A stores the session key for use in the upcoming session and forwards to B the information that originated
at the KDC for B, namely, E(K b ,[K s } ID A ]). 

◦ Because this information is encrypted with Kb , it is protected from eavesdropping. 
◦ B now knows the session key (Ks), knows that the other party is A (from IDA), and knows that the

information originated at the KDC (because it is encrypted using Kb).
At this point, a session key has been securely delivered to A and B, and they may begin their protected
exchange. However, two additional steps are desirable:

4. Using the newly minted session key for encryption, B sends a nonce, N2 , to A.
5. Also, using Ks , A responds with f(N2 ), where f is a function that performs some transformation on N 2

(e.g., adding one).

• These steps assure B that the original message it received (step 3) was not a replay.
• Note that the actual key distribution involves only steps 1 through 3, but that steps 4 and 5, as well as step 3,

perform an authentication function.

Hierarchical Key Control
• A hierarchy of KDCs can be established. 

◦ For communication among entities within the same local domain, the local KDC is responsible for key
distribution. 

◦ If  two  entities  in  different  domains  desire  a  shared  key,  then  the  corresponding  local  KDCs  can
communicate through a global KDC. In this case, any one of the three KDCs involved can actually select
the key.

• The hierarchical concept can be extended to three or even more layers, depending on the size of the user
population and the geographic scope of the internetwork.

• A hierarchical scheme minimizes the effort involved in master key distribution, because most master keys are
those shared by a local KDC with its local entities. 

• Furthermore, such a scheme limits the damage of a faulty or subverted KDC to its local area only.

Session Key Lifetime
• The more frequently session keys are exchanged, the more secure they are, because the opponent has less

ciphertext to work with for any given session key. 
• The distribution of session keys delays the start of any exchange and places a burden on network capacity. 
• A security  manager  must  try  to  balance  these  competing  considerations  in  determining  the  lifetime of  a

particular session key.
• For connection-oriented protocols

◦ use the same session key for the length of time that the connection is open, using a new session key for
each new session. 

◦ If  a  logical  connection has  a very long lifetime,  then it  would be prudent to change the session key
periodically, perhaps every time the PDU (protocol data unit) sequence number cycles. 

• For a connectionless protocol, such as a transaction-oriented protocol, there is no explicit connection initiation
or termination. 
◦ Use  a  new  session  key  for  each  exchange.  However,  this  negates  one  of  the  principal  benefits  of

connectionless protocols, which is minimum overhead and delay for each transaction. 
◦ A better strategy is to use a given session key for a certain fixed period only or for a certain number of

transactions.

A Transparent Key Control Scheme:
• The scheme is useful for providing end-to-end encryption at a network or transport level  in a way that is

transparent to the end users. 
• The approach assumes that communication makes use of a connection- oriented end-to-end protocol, such as

TCP. 
• The  noteworthy  element  of  this  approach  is  a  session  security  module  (SSM),  which  may  consist  of

functionality at one protocol layer, that performs end-to-end encryption and obtains session keys on behalf of
its host or terminal.

• Steps:
◦ When one host wishes to set up a connection to another host, it transmits a connection request packet. 
◦ The SSM saves that packet and applies to the KDC for permission to establish the connection. 
◦ The communication between the SSM and the KDC is encrypted using a master key shared only by this

SSM and the KDC. If the KDC approves the connection request, it generates the session key and delivers
it to the two appropriate SSMs, using a unique permanent key for each SSM. 



◦ The requesting SSM can now release the connection request packet, and a connection is set up between
the two end systems. 

• All user data exchanged between the two end systems are encrypted by their respective SSMs using the one-
time session key.

• The automated key distribution approach provides the flexibility and dynamic characteristics needed to allow a
number of terminal users to access a number of hosts and for the hosts to exchange data with each other.

Decentralized Key Control
• The requirement that the KDC be trusted and be protected from subversion. 
• This requirement can be avoided if key distribution is fully decentralized. 
• Full decentralization is not practical for larger networks using symmetric encryption only, 
• It may be useful within a local context. 
• A decentralized approach requires that each end system be able to communicate in a secure manner with all

potential partner end systems for purposes of session key distribution. 
• Need to be as many as [n(n - 1)]/2 master keys for a configuration with n end systems.
• A session key may be established with the following sequence of steps

1. A issues a request to B for a session key and includes a nonce, N1 .
2. B responds with a message that is encrypted using the shared master key. 



◦ The response includes the session key selected by B, an identifier of B, the value f(N1), and another nonce,
N2 .

3. Using the new session key, A returns f(N2) to B.

Controlling Key Usage:
• The concept of a key hierarchy and the use of automated key distribution techniques greatly reduce the number

of keys that must be manually managed and distributed. 
◦ Different types of session keys on the basis of use, such as

▪ Data-encrypting key, for general communication across a network
▪ PIN-encrypting key, for personal identification numbers (PINs) used inelectronic funds transfer and

point-of-sale applications
▪ File-encrypting key, for encrypting files stored in publicly accessible locations

• To institute controls in systems that limit the ways in which keys are used, based on characteristics associated
with those keys. 

1. One simple plan is to associate a tag with each key 
• Use of the extra 8 bits in each 64-bit DES key. That is, the eight non-key bits ordinarily reserved for parity

checking form the key tag. 
◦ The bits have the following interpretation:

▪ One bit indicates whether the key is a session key or a master key
▪ One bit indicates whether the key can be used for encryption
▪ One bit indicates whether the key can be used for decryption
▪ The remaining bits are spares for future use.

• Because the tag is embedded in the key, it is encrypted along with the key when that key is distributed, thus
providing protection. 

• The drawbacks of this scheme are
1. The tag length is limited to 8 bits, limiting its flexibility and functionality.
2. Because the tag is not transmitted in clear form, it can be used only at the point of decryption, limiting the

ways in which key use can be controlled.

2. The control vector:
• Each session key has an associated control vector consisting of a number of fields that specify the uses and

restrictions for that session key. 
• The length of the control vector may vary.

• The control vector is cryptographically coupled with the key at the time of key generation at the KDC.
• As a first step, the control vector is passed through a hash function that produces a value whose length is equal

to the encryption key length. 
• A hash function maps values from a larger range into a smaller range with a reasonably uniform spread.
• Example, 



◦ if numbers in the range 1 to 100 are hashed into numbers in the range 1 to 10, approximately 10% of the
source values should map into each of the target values.

• The hash value is then XORed with the master key to produce an output that is used as the key input for
encrypting the session key. 

Hash value = H = h(CV)
Key input = Km H⊕H
Ciphertext = E([Km H], K⊕H s )

where Km is the master key and Ks is the session key. 

• The session key is recovered in plaintext by the reverse operation:
D([Km H], E([K⊕H m H], K⊕H s))

• When a session key is delivered to a user from the KDC, it is accompanied by the control vector in clear form.
• The session key can be recovered only by using both the master key that the user shares with the KDC and the

control vector.
• Two advantages over use of an 8-bit tag. 

◦ First, there is no restriction on length of the control vector, which enables arbitrarily complex controls to
be imposed on key use. 

◦ Second, the control vector is available in clear form at all stages of operation. 
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RSA Processing of Multiple Blocks:





EFFICIENT OPERATION USING THE PUBLIC KEY:
• To speed up the operation of the RSA algorithm using the public key, a specific choice of e

is usually made. 
• The most common choice is 65537 (216 + 1); 
• two other popular choices are 3 and 17. 
• Each of these choices has only two 1 bits, so the number of multiplications required to

perform exponentiation is minimized
• However, with a very small public key, such as e = 3, RSA becomes vulnerable to a simple

attack.

EFFICIENT OPERATION USING THE PRIVATE KEY:
• cannot similarly choose a small constant value of d for efficient operation. 
• A small value of d is vulnerable to a brute-force attack and to other forms of cryptanalysis 
• speed up computation using the CRT. 
• compute the value M = Cd mod n. 
• simplify the calculation using Fermat’s theorem
• The end result  is  that  the  calculation  is  approximately  four  times  as  fast  as  evaluating

M=Cdmod n directly











































Message Encryption:

Symmetric Encryption &  Public - Key Encryption

• the order in which the FCS and encryption functions are performed is critical. The sequence 
as internal error control, which the authors contrast with external error control

• With internal error control, authentication is provided because an opponent would have 
difficulty generating ciphertext that, when decrypted, would have valid error control bits. 

• If instead the FCS is the outer code, an opponent can construct messages with valid error-
control codes. Although the opponent cannot know what the decrypted plaintext will be, he 
or she can still hope to create confusion and disrupt operations.



• structure is provided by the use of a communications architecture consisting of layered 
protocols. 

• The structure of messages transmitted using the TCP/IP protocol architecture.



























SECURE HASH ALGORITHM (SHA)

• SHA was developed by the National  Institute  of  Standards  and Technology (NIST) and
published as a federal information processing standard (FIPS 180) in 1993

• SHA-1 produces a hash value of 160 bits.
• three new versions of SHA, with hash value lengths of 256, 384, and 512 bits, known as

SHA-256, SHA-384, and SHA-512, respectively

SHA-512 Logic
• The algorithm takes as input a message with a maximum length of less than 2 128 bits and

produces as output a 512-bit message digest. The input is processed in 1024-bit blocks.

The processing consists of the following steps.

Step 1 Append padding bits. The message is padded so that its length is congruent to 896 modulo
1024 [length K 896(mod 1024)]. Padding is always added, even if the message is already of the
desired length. Thus, the number of padding bits is in the range of 1 to 1024. The padding consists
of a single 1 bit followed by the necessary number of 0 bits.

Step 2 Append length. A block of 128 bits is appended to the message. This block is treated as an
unsigned 128-bit integer (most significant byte first) and contains the length of the original message
in bits (before the padding). The outcome of the first two steps yields a message that is an integer
multiple of 1024 bits in length. In Figure 11.9, the expanded message is represented as the sequence
of 1024-bit blocks. The total length of the expanded message is N * 1024 bits.

Step 3 Initialize hash buffer. A 512-bit buffer is used to hold intermediate and final results of the
hash function. The buffer can be represented as eight 64-bit registers (a, b, c, d, e, f, g, h). These
registers are initialized to the following 64-bit integers (hexadecimal values):

a = 6A09E667F3BCC908 e = 510E527FADE682D1



b = BB67AE8584CAA73B f = 9B05688C2B3E6C1F
c = 3C6EF372FE94F82B g = 1F83D9ABFB41BD6B
d = A54FF53A5F1D36F1 h = 5BE0CD19137E2179

These values are stored in big-endian format, which is the most significant byte of a word in the
low-address (leftmost) byte position. These words were obtained by taking the first sixty-four bits
of the fractional parts of the square roots of the first eight prime numbers.

Step 4 Process message in 1024-bit (128-byte) blocks. The heart of the algorithm is a module that
consists of 80 rounds; 

Each round takes as input the 512-bit buffer value, abcdefgh, and updates the contents of the buffer.
At input to the first round, the buffer has the value of the intermediate hash value, Hi - 1 . Each
round t makes use of a 64-bit value Wt , derived from the current 1024-bit block being processed
(Mi ). These values are derived using a message schedule describedsubsequently. Each round also
makes use of an additive constant Kt , where 0 ... t ... 79 indicates one of the 80 rounds. These  ords
represent the first 64 bits of the fractional parts of the cube roots of the first 80 prime numbers.
The constants provide a “randomized” set of 64-bit patterns, which should eliminate any regularities
in the input data. 
The output of the eightieth round is added to the input to the first round (H i - 1 ) to produce H i .
The addition is  done independently for each of the eight words in the buffer  with each of the
corresponding words in H i - 1 , using addition modulo 2 64 .

Step 5 Output. After all N 1024-bit blocks have been processed, the output from the Nth stage is
the 512-bit message digest.



summarize the behavior of SHA-512

SHA-512 Round Function

Each round is defined by the following set of equations:



Two observations can be made about the round function.
1. Six of the eight words of the output of the round function involve simply permutation (b, c, d, f,
g, h) by means of rotation. This is indicated by shading 
2. Only two of the output words (a, e) are generated by substitution.

the 64-bit word values W t are derived from the 1024-bit message.



AUTHENTICATION PROTOCOLS

Mutual Authentication
An important application area is that of mutual authentication protocols. Such protocols enable communicating parties 
to satisfy themselves mutually about each other’s identity and to exchange session keys.

examples of replay attacks:
1. The simplest replay attack is one in which the opponent simply copies a message and replays it later.
2. An opponent can replay a timestamped message within the valid time window. If both the original and the replay 
arrive within then time window, this incident can be logged.
3. As with example (2), an opponent can replay a timestamped message within the valid time window, but in addition, 
the opponent suppresses the original message. Thus, the repetition cannot be detected.
4. Another attack involves a backward replay without modification. This is a replay back to the message sender. This 
attack is possible if symmetric encryption is used and the sender cannot easily recognize the diffe

two general approaches is used:

Timestamps: Party A accepts a message as fresh only if the message contains
a timestamp that, in A’s judgment, is close enough to A’s knowledge of cur-
rent time. This approach requires that clocks among the various participants
be synchronized.
Challenge/response: Party A, expecting a fresh message from B, first sends B
a nonce (challenge) and requires that the subsequent message (response) re-
ceived from B contain the correct nonce value.

use of a trusted key distribution center

One-Way Authentication
the sender to issue a request to the intended recipient, await a response that includes a session key, and only then
send the message.



















ELGAMAL CRYPTOSYSTEM

• a public-key scheme based on discrete logarithms, closely related to the Diffie–Hellman 
technique

• The Elgamal cryptosystem is used in some form in a number of standards including the 
digital signature standard (DSS) and the S/MIME email standard



Restate the Elgamal process:

• The security of Elgamal is based on the difficulty of computing discrete logarithms.























AUTHENTICATION APPLICATIONS
•

KERBEROS

• Kerberos 4 is an authentication service developed as part of Project Athena at MIT.
• The problem that Kerberos addresses is this: 

◦ Assume an open distributed environment in which users at workstations wish to access
services on servers distributed throughout the network. We would like for servers to be
able to restrict  access to authorized users and to be able to authenticate requests  for
service.  In  this  environment,  a  workstation  cannot  be  trusted  to  identify  its  users
correctly to network services. 

• Three threats exist:
1. A user may gain access to a particular workstation and pretend to be another user

operating from that workstation.
2. A user may alter the network address of a workstation so that the requests sent from

the altered workstation appear to come from the impersonated workstation.
3. A user may eavesdrop on exchanges and use a replay attack to gain entrance to a

server or to disrupt operations.

• Kerberos provides a centralized authentication server whose function is to authenticate users
to servers and servers to users.

• Kerberos  relies  exclusively  on  symmetric  encryption,  making  no  use  of  public-key
encryption.

• Two versions of Kerberos are in common use. Version 4 &Version 5

Motivation
• If  a  set  of  users  is  provided  with  dedicated  personal  computers  that  have  no  network

connections, then a user’s resources and files can be protected by physically securing each
personal computer.

• Distributed architecture consisting of dedicated user workstations (clients) and distributed or
centralized servers. 

• Three approaches to security can be envisioned.
1. Rely on each individual client workstation to assure the identity of its user or users

and rely on each server to enforce a security policy based on user identification (ID).
2. Require that client systems authenticate themselves to servers, but trust the client

system concerning the identity of its user.
3. Require the user to prove his or her identity for each service invoked. Also require

that servers prove their identity to clients.
• Kerberos is needed to protect user information and resources housed at the server
• Kerberos assumes a distributed client/server architecture and employs one or more Kerberos

servers to provide an authentication service.

Requirements.
• Secure: A network eavesdropper should not be able to obtain the necessary information to

impersonate  a  user.  More  generally,  Kerberos  should  be  strong enough  that  a  potential
opponent does not find it to be the weak link.

• Reliable: For all services that rely on Kerberos for access control, lack of availability of the
Kerberos  service  means  lack  of  availability  of  the  supported  services.  Hence,  Kerberos
should  be  highly  reliable  and  should  employ  a  distributed  server  architecture  with  one
system able to back up another.

• Transparent: Ideally, the user should not be aware that authentication is taking place beyond
the requirement to enter a password.



• Scalable: The system should be capable of supporting large numbers of clients and servers.
This suggests a modular, distributed architecture.

Kerberos Version 4
• Version 4 of Kerberos makes use of DES, to provide the authentication service.

A SIMPLE AUTHENTICATION DIALOGUE 
• In an unprotected network environment, any client can apply to any server for service. 
• servers must be able to confirm the identities of clients who request service. 

• Use an authentication server (AS) that knows the passwords of all users and stores these in a
centralized database. 

• In addition, the AS shares a unique secret key with each server. 
• These keys have been distributed physically or in some other secure manner.
• Hypothetical dialogue:  

• The user logs on to a workstation and requests access to server V.
• The client module C in the user’s workstation requests the user’s password and then sends a

message to the AS that includes the user’s ID, the server’s ID, and the user’s password. 
• The AS checks its database to see if the user has supplied the proper password for this user

ID and whether this user is permitted access to server V. 
• If both tests are passed, the AS accepts the user as authentic and must now convince the

server that this user is authentic. 
• Ticket: 

◦ The AS creates a ticket that contains the user’s ID and network address and the server’s
ID. 

◦ This ticket is encrypted using the secret key shared by the AS and this server. 
◦ This ticket is then sent back to C. 
◦ Because the ticket is encrypted, it cannot be altered by C or by an opponent.

• With this ticket, C can now apply to V for service. 
• C sends a message to V containing C’s ID and the ticket. 
• V decrypts the ticket and verifies that the user ID in the ticket is the same as the unencrypted

user ID in the message. 
• If  these two match,  the server  considers the user authenticated and grants the requested

service.



• The server would receive a valid ticket that matches the user ID and grant access to the user
on that other workstation. 

• To prevent this attack, the AS includes in the ticket the network address from which the
original request came. 

• Now the ticket is  valid only if  it  is transmitted from the same workstation that initially
requested the ticket.

A MORE SECURE AUTHENTICATION DIALOGUE 
• To minimize the number of times that a user has to enter a password. 

◦ Suppose each ticket can be used only once. If user C logs on to a workstation in the
morning and wishes to check his or her mail at a mail server, C must supply a password
to get a ticket for the mail server. If C wishes to check the mail several times during the
day, each attempt requires reentering the password. 

◦ improve by tickets are reusable.

◦ For a single logon session, the workstation can store the mail server ticket after it is
received and use it on behalf of the user for multiple accesses to the mail server.

◦ a user would need a new ticket for every different service

• An eavesdropper could capture the password and use any service accessible to the victim.
• a scheme for avoiding plaintext passwords and a new server, known as the ticket-granting

server (TGS).
• The new scenario:

• The new service, TGS, issues tickets to users who have been authenticated to AS. 
• Thus, the user first requests a ticket-granting ticket (Tickettgs ) from the AS. 
• The client module in the user workstation saves this ticket. 
• Each time the user requires access to a new service, the client applies to the TGS, using the

ticket to authenticate itself. 
• The TGS then grants a ticket for the particular service. 
• The client saves each service-granting ticket and uses it to authenticate its user to a server

each time a particular service is requested.

• Details of this scheme:
1. The client requests a ticket-granting ticket on behalf of the user by sending its user’s

ID to the AS, together with the TGS ID, indicating a request to use the TGS service.
2. The AS responds with a ticket that is encrypted with a key that is derived from the

user’s password (K c ), which is already stored at the AS. When this response arrives



at the client, the client prompts the user for his or her password, generates the key,
and attempts to decrypt the incoming message. If the correct password is supplied,
the ticket is successfully recovered.

• Because only the correct user should know the password, only the correct user can recover
the ticket.

• The ticket itself consists of the ID and network address of the user, and the ID of the TGS

• The ticket-granting ticket is encrypted with a secret key known only to the AS and the TGS.
This prevents alteration of the ticket. 

• The ticket is reencrypted with a key based on the user’s password. 
• This  assures  that  the  ticket  can  be  recovered  only  by  the  correct  user,  providing  the

authentication.

• Now that the client has a ticket-granting ticket, access to any server can be obtained

3. The client requests a service-granting ticket on behalf of the user. For this purpose, the
client transmits a message to the TGS containing the user’s ID, the ID of the desired service,
and the ticket-granting ticket.
4. The TGS decrypts the incoming ticket using a key shared only by the AS and the TGS
(Ktgs ) and verifies the success of the decryption by the presence of its ID. It checks to make
sure that the lifetime has not expired. Then it compares the user ID and network address
with the incoming information to authenticate the user. If the user is permitted access to the
server V, the TGS issues a ticket to grant access to the requested service.

Service-granting ticket:
• the ticket contains a timestamp and lifetime.
• If the user wants access to the same service at a later time, the client can simply use the

previously acquired service-granting ticket and need not bother the user for a password.
• The ticket  is  encrypted  with  a  secret  key  (Kv)  known only  to  the  TGS and the  server,

preventing alteration.
• Finally,  with  a  particular  service-granting  ticket,  the  client  can  gain  access  to  the

corresponding service

5. The client requests access to a service on behalf of the user. For this purpose, the client transmits
a  message  to  the  server  containing  the  user’s  ID  and  the  servicegranting  ticket.  The  server
authenticates by using the contents of the ticket.

THE VERSION 4 AUTHENTICATION DIALOGUE



• A network service (the TGS or an application service) must be able to prove that the person
using a ticket is the same person to whom that ticket was issued.

• requirement for servers to authenticate themselves to users

• to use an encryption key as the secure information; this is referred to as a session key in
Kerberos.

Kerberos exchanges among the parties





KERBEROS REALMS AND MULTIPLE KERBERI 
A full-service Kerberos environment consisting of a Kerberos server, a number of clients, and a
number of application servers requires the following:

1. The Kerberos server must have the user ID and hashed passwords of all participating users
in its database. All users are registered with the Kerberos server.

2. The Kerberos server must share a secret key with each server. All servers are registered with
the Kerberos server.

3. The Kerberos server in each interoperating realm shares a secret key with the server in the
other realm. The two Kerberos servers are registered with each other.

Kerberos realm:
• A Kerberos realm is a set of managed nodes that share the same Kerberos database. 
• The Kerberos database resides on the Kerberos master computer system, which should be

kept in a physically secure room. 
• A read-only copy of the Kerberos database might also reside on other Kerberos computer

systems. 
• However, all changes to the database must be made on the master computer system.
• Changing or accessing the contents of a Kerberos database requires the Kerberos master

password. 

Kerberos principal:
•  a service or user that is known to the Kerberos system. 
• Each Kerberos principal is identified by its principal name.
• Principal names consist of three parts: a service or user name, an instance name, and a realm

name.



The details of the exchanges

Kerberos Version 5
• Kerberos version 5 is specified in RFC 4120 and provides a number of improvements over

version 4
• DIFFERENCES BETWEEN VERSIONS 4 AND 5 Version 5 is intended to address the

limitations of version 4 in two areas: environmental shortcomings and technical deficiencies.
• environmental shortcomings.
1. Encryption system dependence: Version 4 requires the use of DES. Export restriction on

DES as  well  as  doubts  about  the  strength  of  DES were  thus  of  concern.  In  version  5,
ciphertext is tagged with an encryption-type identifier so that any encryption technique may
be used. 

2. Internet protocol dependence: Version 4 requires the use of Internet Protocol (IP) addresses.
Version 5 network addresses are tagged with type and length, allowing any network address
type to be used.



3. Message byte ordering: In version 4, the sender of a message employs a byte ordering of its
own choosing and tags the message to indicate least significant byte in lowest address or
most  significant  byte  in  lowest  address.  This  techniques  works  but  does  not  follow
established conventions.  In  version 5,  all  message  structures  are  defined using  Abstract
Syntax  Notation  One  (ASN.1)  and  Basic  Encoding  Rules  (BER),  which  provide  an
unambiguous byte ordering.

4. Ticket lifetime: Lifetime values in version 4 are encoded in an 8-bit quantity in units of five
minutes. In version 5, tickets include an explicit start time and end time, allowing tickets
with arbitrary lifetimes.

5. Authentication forwarding: Version 4 does not allow credentials issued to one client to be
forwarded to some other host and used by some other client. This capability would enable a
client to access a server and have that server access another server on behalf of the client.
For example, a client issues a request to a print server that then accesses the client’s file
from a file server, using the client’s credentials for access. Version 5 provides this capability.

6. Interrealm authentication:  In version 4,  interoperability  among N realms requires on the
order of N2 Kerberos-to-Kerberos relationships, as described earlier. Version 5 supports a
method that requires fewer relationships

The deficiencies are the following.
1. Double encryption
2. PCBC encryption
3. Session keys
4. Password attacks

THE VERSION 5 AUTHENTICATION DIALOGUE

• Realm: Indicates realm of user
• Options: Used to request that certain flags be set in the returned ticket
• Times: Used by the client to request the following time settings in the ticket:

◦ —from: the desired start time for the requested ticket



◦ —till: the requested expiration time for the requested ticket
◦ —rtime: requested renew-till time

• Nonce: A random value to be repeated in message (2) to assure that the response is fresh and
has not been replayed by an opponent

The authenticator includes several new fields:
• Subkey:  The  client’s  choice  for  an  encryption  key  to  be  used  to  protect  this  specific

application session. If this field is omitted, the session key from the ticket (Kc,v ) is used.
• Sequence number: An optional field that specifies the starting sequence number to be used

by the server for messages sent to the client during this session. Messages may be sequence
numbered to detect replays.

TICKET FLAGS 
• The flags field included in tickets in version 5 supports expanded functionality compared to

that available in version 4.



MUTUAL TRUST     
Key Management and Distribution 

 The topics of cryptographic key management and cryptographic key distribution are complex, involving
cryptographic, protocol, and management considerations. 

SYMMETRIC KEY DISTRIBUTION WITH SYMMETRIC ENCRYPTION
 A Key Distribution Scenario
 Hierarchical Key Control
 Session Key Lifetime
 A Transparent Key Control Scheme
 Decentralized Key Control
 Controlling Key Usage

For symmetric encryption to work, the two parties to an exchange must share the same key, and that key must be
protected from access by others. 

 key distribution technique
◦ delivering a key to two parties who wish to exchange data without allowing others to see the key. 

 For two parties A and B, key distribution can be achieved in a number of ways, as follows:
1. A can select a key and physically deliver it to B.
2. A third party can select the key and physically deliver it to A and B.
3. If A and B have previously and recently used a key, one party can transmit the new key to the

other, encrypted using the old key.
4. If  A and B each  has an encrypted  connection to a  third party C, C can deliver  a key on the

encrypted links to A and B.

 link encryption device is going to be exchanging data only with its partner on the other end of the link.
 The scale of the problem depends on the number of communicating pairs that must be supported. 
 If end-to-end encryption is done at a network or IP level, then a key is needed for each pair of hosts on the

network that wish to communicate. 
 If there are N hosts, the number of required keys is [N(N - 1)]/2. 
 If encryption is done at the application level, then a key is needed for every pair of users or processes that

require communication. 
 The use of a key distribution center is based on the use of a hierarchy of keys. At a minimum, two levels of 

keys are used



A Key Distribution Scenario
 The scenario assumes that each user shares a unique master key with the key distribution center (KDC).A

has a master key, Ka, known only to itself and the KDC; similarly, B shares the master key Kb with the
KDC. 

The following steps occur:
1. A issues a request to the KDC for a session key to protect a logical connection to B. 

◦ The message includes the identity of A and B and a unique identifier, N1,for this transaction, which we
refer to as a nonce. 

◦ The nonce may be a timestamp,a counter, or a random number; the minimum requirement is that it
differs with each request. 

◦ Also, to prevent masquerade, it should be difficult for an opponent to guess the nonce. Thus, a random
number is a good choice for a nonce.

2. The KDC responds with a message encrypted using Ka. Thus, A is the only one who can successfully read
the message, and A knows that it originated at the KDC. The message includes two items intended for A:

 The one-time session key, Ks, to be used for the session
 The original request message, including the nonce, to enable A to match this response with the

appropriate request
 A can verify that its original request was not altered before reception by the KDC and, because of the

nonce, that this is not a replay of some previous request.
 In addition, the message includes two items intended for B: 

 The one-time session key, Ks, to be used for the session
 An identifier of A (e.g., its network address), IDA

 These last two items are encrypted with Kb (the master key that the KDC shares with B). They are to be
sent to B to establish the connection and prove A’s identity.

3. A stores the session key for use in the upcoming session and forwards to B the information that originated at the
KDC for B. 
4. Using the newly minted session key for encryption, B sends a nonce, N2, to A.
5. Also, using Ks, A responds with f(N2), where f is a function that performs some transformation on N2 



These steps assure B that the original message it received (step 3) was not a replay.
The actual key distribution involves only steps 1 through 3, but that steps 4 and 5, as well as step 3, p erform an
authentication function.

Hierarchical Key Control
 It is not necessary to limit the key distribution function to a single KDC. As an alternative, a hierarchy of

KDCs can be established. For example, there can be local KDCs, each responsible for a small domain of
the overall internetwork, such as a single LAN or a single building. 

 The hierarchical concept can be extended to three or even more layers, depending on the size of the user
population and the geographic scope of the internetwork.

 A hierarchical scheme minimizes the effort involved in master key distribution, because most master keys
are those shared by a local KDC with its local entities. Furthermore, such a scheme limits the damage of a
faulty or subverted KDC to its local area only.

Session Key Lifetime
 The more frequently session keys are exchanged, the more secure they are, because the opponent has less

ciphertext to work with for any given session key.On the other hand, the distribution of session keys delays
the start of any exchange and places a burden on network capacity.

 A security manager must try to balance these competing considerations in determining the lifetime of a
particular session key.
◦ i)For connection-oriented protocols, use the same session key for the length of time that the connection

is open, using a new session key for each new session. If a logical connection has a very long lifetime,
then it would be prudent to change the session key periodically, perhaps every time the PDU (protocol
data unit) sequence number cycles.

◦ ii)For a connectionless protocol, such as a transaction-oriented protocol, there is no explicit connection
initiation or termination. Thus, it is not obvious how often one needs to change the session key.

 The most secure approach is to use a new session key for each exchange. However, this negates one of the
principal benefits of connectionless protocols, which is minimum overhead and delay for each transaction.
A better strategy is to use a given session key for a certain fixed period only or for a certain number of
transactions.

A Transparent Key Control Scheme



 The scheme is useful for providing end-to-end encryption at a network or transport level in a way that is
transparent to the end users. 

 The approach assumes that communication makes use of a connection- oriented end-to-end protocol, such
as TCP. The noteworthy element of this approach is a session security module (SSM), which may consist
of functionality, at one protocol layer, that performs end-to-end encryption and obtains session keys on
behalf of its host or terminal.

Steps:
1. When one host wishes to set up a connection to another host, it transmits a connection request packet.
2. The SSM saves that packet and applies to the KDC for permission to establish the connection. 
3. The communication between the SSM and the KDC is encrypted using a master key shared only by this

SSM and the KDC. If the KDC approves the connection request, it generates the session key and delivers it
to the two appropriate SSMs, using a unique permanent key for each SSM. 

4. The requesting SSM can now release the connection request packet, and a connection is set up between the
two end systems . 

 All user data exchanged between the two end systems are encrypted by their respective SSMs using the
one-time session key. 

 The automated key distribution approach provides the flexibility and dynamic characteristics needed to
allow a number of terminal users to access a number of hosts and for the hosts to exchange data with each
other.

Decentralized Key Control
 The use of a key distribution center imposes the requirement that the KDC be trusted and be protected from

subversion. This requirement can be avoided if key distribution is fully decentralized. 
 Although full decentralization is not practical for larger networks using symmetric encryption only, it may

be useful within a local context.
 A decentralized approach requires that each end system be able to communicate in a secure manner with all

potential partner end systems for purposes of session key distribution.



 Thus, there may need to be as many as [n(n - 1)]/2 master keys for a configuration with n end systems.
A session key may be established with the following sequence of steps

1. A issues a request to B for a session key and includes a nonce, N1.
2. B responds with a message that is encrypted using the shared master key. The response includes the session key
selected by B, an identifier of B, the value f(N1), and another nonce, N2.
3. Using the new session key, A returns f(N2) to B.
            
The concept of a key hierarchy and the use of automated key distribution techniques greatly reduce the number of
keys that must be manually managed and distributed. It also may be desirable to impose some control on the way in
which automatically distributed keys are used. 

Different types of session keys on the basis of use, such as
   ■ Data-encrypting key, for general communication across a network
   ■ PIN-encrypting key, for personal identification numbers (PINs) used in electronic funds transfer and point-of-
sale applications
   ■ File-encrypting key, for encrypting files stored in publicly accessible locations
TAG

The  eight  non-key  bits  ordinarily  reserved  for  parity  checking  form the  key  tag.  The  bits  have  the  following
interpretation:
■ One bit indicates whether the key is a session key or a master key 
■ One bit indicates whether the key can be used for encryption
■ One bit indicates whether the key can be used for decryption 
■ The remaining bits are spares for future use.

Because  the tag is  embedded in the key, it  is  encrypted along with the key when that  key is distributed,  thus
providing protection. The drawbacks of this scheme are
1. The tag length is limited to 8 bits, limiting its flexibility and functionality.
2. Because the tag is not transmitted in clear form, it can be used only at the point of decryption, limiting the ways in
which key use can be controlled.

Control Vector:          

 The control vector is cryptographically coupled with the key at the time of key generation at the KDC. 
 The coupling and decoupling processes 



 As a first step, the control vector is passed through a hash function that produces a value whose length is
equal to the encryption key length. 

 In essence, a hash function maps values from a larger range into a smaller range with a reasonably uniform
spread. 

 Thus,  for  example,  if  numbers  in  the  range 1  to  100 are  hashed  into numbers  in  the  range  1 to  10,
approximately 10% of the source values should map into each of the target values.

The hash value is then XORed with the master key to produce an output that is used as the key input for encrypting
the session key. Thus,
            Hash value = H = h(CV)
            Key input = Km ⊕ H 
            Ciphertext = E([Km ⊕ H], Ks)
where K m is the master key and Ks is the session key. The session key is recovered in plaintext by the reverse
operation:
            D([Km ⊕ H], E([Km ⊕ H], Ks))


 When a session key is delivered to a user from the KDC, it is accompanied by the control vector in clear

form. 
 The session key can be recovered only by using both the master key that the user shares with the KDC and

the control vector. Thus, the linkage between the session key and its control vector is maintained.

two advantages 
1. there is no restriction on length of the control vector,  which enables arbitrarily complex controls to be

imposed on key use. 
2. the control vector is available in clear form at all stages of operation. Thus, control of key use can be

exercised in multiple locations.

SYMMETRIC KEY DISTRIBUTION WITH ASYMMETRIC ENCRYPTION

 Simple Secret Key Distribution
 Secret Key Distribution with Confidentiality and Authentication
 A Hybrid Scheme



Simple Secret Key Distribution
An extremely simple scheme was put forward by Merkle [MERK79], as illustrated in Figure 14.7. If A wishes to
communicate with B, the following procedure is employed:
1.  A generates  a  public/private  key pair  {PUa,  PRa} and transmits  a  message  to  B consisting of  PUa and an
identifier of A, IDA.
2. B generates a secret key, Ks, and transmits it to A, which is encrypted with A’s public key.
3. A computes D(PRa, E(PUa, Ks)) to recover the secret key. Because only A can decrypt the message, only A and
B will know the identity of Ks.
4. A discards PU a and PRa and B discards PUa.
A and B can now securely communicate using conventional encryption and the session key Ks. At the completion of
the exchange, both A and B discard Ks. Despite its simplicity, this is an attractive protocol. No keys exist before the
start of the communication and none exist after the completion of communication. Thus, the risk of compromise of
the keys is minimal. At the same time, the communication is secure from eavesdropping.

 insecure against an adversary who can intercept messages and then either relay the intercepted message or
substitute another message Such an attack is known as a man-in-the-middle attack.

 if an adversary,  D, has control of the intervening communication channel,  then D can compromise the
communication in the following fashion without being detected.

1. A generates a public/private key pair {PUa, PRa} and transmits a message intended for B consisting of PUa and
an identifier of A, IDA.
2. D intercepts the message, creates its own public/private key pair {PUd, PRd} and transmits to B.
3. B generates a secret key, Ks, and transmits E(PUd, Ks).
4. D intercepts the message and learns Ks by computing D(PRd, E(PUd, Ks)).
5. D transmits E(PUa, Ks) to A.



 The result is that both A and B know K s and are unaware that Ks has also been revealed to D. A and B can
now exchange messages using Ks. 

 D no longer actively interferes with the communications channel but simply eavesdrops. Knowing Ks, D
can decrypt all messages, and both A and B are unaware of the problem. 

 Thus, this simple protocol is only useful in an environment where the only threat is eavesdropping.

Secret Key Distribution with Confidentiality and Authentication

 provides protection against both active and passive attacks. 



 When it is assumed that A and B have exchanged public keys by one of the schemes  
 Then the following steps occur.

 1. A uses B’s public key to encrypt a message to B containing an identifier of A(IDA) and a nonce (N1), which is
used to identify this transaction uniquely.
 2. B sends a message to A encrypted with PUa and containing A’s nonce (N1) as well as a new nonce generated by
B (N2). Because only B could have decrypted message (1), the presence of N1 in message (2) assures A that the
correspondent is B.
 3. A returns N2, encrypted using B’s public key, to assure B that its correspondent is A.
 4. A selects a secret key Ks and sends M = E(PUb, E(PRa, Ks)) to B. Encryption of this message with B’s public
key ensures that only B can read it; encryption with A’s private key ensures that only A could have sent it.
5. B computes D(PUa, D(PRb, M)) to recover the secret key.
The result is that this scheme ensures both confidentiality and authentication in the exchange of a secret key.

A Hybrid Scheme
 use public-key encryption to distribute secret keys is a hybrid approach in use 
 This scheme retains the use of a key distribution center (KDC) that shares a secret master key with each

user and distributes secret session keys encrypted with the master key. 
 A public-key scheme is used to distribute the master keys. 
 The following rationale is provided for using this three-level approach:

■ Performance: 
There  are  many  applications,  especially  transaction-oriented  applications,  in  which  the  session  keys  change
frequently. Distribution of session keys by public-key encryption could degrade overall system performance because
of the relatively high computational load of public-key encryption and decryption. With a three-level hierarchy,
public-key encryption is used only occasionally to update the master key between a user and the KDC.

■ Backward compatibility: 
The hybrid scheme is easily overlaid on an existing KDC scheme with minimal disruption or software changes.
The  addition  of  a  public-key  layer  provides  a  secure,  efficient  means  of  distributing  master  keys.  This  is  an
advantage in a configuration in which a single KDC serves a widely distributed set of users.



DISTRIBUTION OF PUBLIC KEY
General schemes:
■ Public announcement 
■ Publicly available directory 
■ Public-key authority
■ Public-key certificate

Public announcement of Public Keys
 Public-key encryption is that the public key is public. 
 Any participant can send his or her public key to any other participant or broadcast the key to the community at large. 

 Major weakness: 
◦ Anyone can forge such a public announcement. some user could pretend to be user A and send a public key to

another participant or broadcast such a public key. Until such time as user A discovers the forgery and alerts other
participants, the forger is able to read all encrypted messages intended for A and can use the forged keys for
authentication

Public available directory
 A greater degree of security can be achieved by maintaining a publicly available dynamic directory of public keys.
 Maintenance and distribution of the public directory would have to be the responsibility of some trusted entity or

organization. 

 Elements:
1. The authority maintains a directory with a {name, public key} entry for each participant.

2. Each participant registers a public key with the directory authority. Registration would have to be in person or by
some form of secure authenticated communication.

3. A participant may replace the existing key with a new one at any time, either because of the desire to replace a
public key that has already been used for a large amount of data, or because the corresponding private key has
been compromised in some way.



4. Participants could also access the directory electronically. For this purpose, secure, authenticated communication
from the authority to the participant is mandatory.

Public key Authority
 Stronger security for public-key distribution can be achieved by providing tighter control over the distribution of public

keys from the directory.
 a central authority maintains a dynamic directory of public keys of all participants. 
 Each participant reliably knows a public key for the authority, with only the authority knowing the corresponding

private key.

Steps:
1. A sends a timestamped message to the public-key authority containing a request for the current public key of B. 

2. The authority responds with a message that is encrypted using the authority’s private key 
◦ The message includes the following: 

▪ B’s public key, PUb, which A can use to encrypt messages destined for B 
▪ The original request used to enable A to match this response with the corresponding earlier request and to

verify that the original request was not altered before reception by the authority 
▪ The  original  timestamp  given  so  A  can  determine  that  this  is  not  an  old  message  from the  authority

containing a key other than B’s current public key 
3. A stores B’s public key and also uses it to encrypt a message to B containing an identifier of A (IDA) and a nonce

(N1), which is used to identify this transaction uniquely. 
4. B retrieves A’s public key from the authority in the same manner as A retrieved B’s public key. At this point, public

keys have been securely delivered to A and B, and they may begin their protected exchange. 
However, two additional steps are desirable: 

5. B sends a message to A encrypted with PUa and containing A’s nonce (N1) as well as a new nonce generated by B
(N2).  Because  only B could have  decrypted  message (3),  the  presence  of  N1 in message  (6)  assures  A that  the
correspondent is B.

6. A returns N2, which is encrypted using B’s public key, to assure B that its correspondent is A. Thus, a total of seven
messages are required.



Public key certificates
 To use certificates that can be used by participants to exchange keys without contacting a public-key authority, in a way

that is as reliable as if the keys were obtained directly from a public-key authority.
 Anyone needing this user’s public key can obtain the certificate and verify that it is valid by way of the attached trusted

signature. 
 A participant can also convey its key information to another by transmitting its certificate. Other participants can verify

that the certificate was created by the authority. 
Requirements :

1. Any participant can read a certificate to determine the name and public key of the certificate’s owner.

2. Any participant can verify that the certificate originated from the certificate authority and is not counterfeit.

3. Only the certificate authority can create and update certificates

4. Any participant can verify the time validity of the certificate. 
A certificate scheme

 Each participant applies to the certificate authority, supplying a public key and requesting a certificate.
 Application must be in person or by some form of secure authenticated communication. 
 For participant A, the authority provides a certificate of the form 

PRauth is the private key used by the authority and T is a timestamp. 
 A may then pass this certificate on to any other participant, who reads and verifies the certificate as follows:

 The recipient uses the authority’s public key to decrypt the certificate. 
 Because the certificate is readable only using the authority’s public key, this verifies that the certificate came from the

certificate authority. 
 The timestamp T validates the currency of the certificate. 



X.509 CERTIFICATES
X.509 CERTIFICATES

 X.509 defines a framework for the provision of authentication services by the X.500 directory to its users.
The directory may serve as a repository of public-key certificates. 

 Each certificate contains the public key of a user and is signed with the private key of a trusted certification
authority. 

 X.509 defines alternative authentication protocols based on the use of public-key certificates.
 X.509 is an important standard because the certificate structure and authentication protocols defined in

X.509 are used in a variety of contexts. For example, the X.509 certificate format is used in S/MIME, IP
Security, and SSL/TLS.

 X.509 was initially issued in 1988. 
 The standard is currently at version 7, issued in 2012.
 X.509 is based on the use of public-key cryptography and digital signatures. The standard does not dictate

the use of a specific digital signature algorithm nor a specific hash function. 

Overall X.509 scheme for generation of a public-key certificate

 The certificate for Bob’s public key includes unique identifying information for Bob, Bob’s public key, and
identifying information about the CA, plus other information as explained subsequently. 

 This information is then signed by computing a hash value of the information and generating a digital
signature using the hash value and the CA’s private key. 

 X.509 indicates that the signature is formed by encrypting the hash value. 

Certificates
 The heart of the X.509 scheme is the public-key certificate associated with each user.
 These user certificates are assumed to be created by some trusted certification authority (CA) and placed in

the directory by the CA or by the user. 
 The directory server itself is not responsible for the creation of public keys or for the certification function;

it merely provides an easily accessible location for users to obtain certificates.



 Version: 
◦ Differentiates among successive versions of the certificate format; the default is version 1. 
◦ If the issuer unique identifier or subject unique identifier are present, the value must be version 2. If

one or more extensions are present,the version must be version 3. Although the X.509 specification is
currently at version 7, no changes have been made to the fields that make up the certificate since
version 3.

 Serial number: 
◦ An integer value unique within the issuing CA that is unambiguously associated with this certificate.

 Signature algorithm identifier: 
◦ The  algorithm used  to  sign  the  certificate  together  with  any  associated  parameters.  Because  this

information is repeated in the signature field at the end of the certificate, this field has little, if any,
utility.

 Issuer name: 
◦ X.500 name of the CA that created and signed this certificate.

 Period of validity: 
◦ Consists of two dates: the first and last on which the certificate is valid.

 Subject name: 
◦ The name of the user to whom this certificate refers. That is, this certificate certifies the public key of

the subject who holds the corresponding private key.
 Subject’s public-key information: 

◦ The public key of the subject, plus an identifier of the algorithm for which this key is to be used,
together with any associated parameters.

 Issuer unique identifier: 
◦ An optional-bit string field used to identify uniquely the issuing CA in the event the X.500 name has

been reused for different entities. 
 Subject unique identifier: 

◦ An optional-bit string field used to identify uniquely the subject in the event the X.500 name has been
reused for different entities.



 Extensions: 
◦ A set of one or more extension fields. Extensions were added in version 3 and are discussed later in

this section.
 Signature: 

◦ Covers all of the other fields of the certificate. One component of this field is the digital signature
applied to the other fields of the certificate. This field includes the signature algorithm identifier. 

 The standard uses the following notation to define a certificate: 

 The CA signs the certificate with its private key. If the corresponding public key is known to a user, then
that  user  can  verify  that  a  certificate  signed  by  the  CA is  valid.  This  is  the  typical  digital  signature
approach.

OBTAINING A USER’S CERTIFICATE 
 User certificates generated by a CA have the following characteristics:

◦ Any user with access to the public key of the CA can verify the user public key that was certified.
◦ No party other than the certification authority can modify the certificate without this being detected.

 If all users subscribe to the same CA, then there is a common trust of that CA. All user certificates can be
placed in the directory for access by all users. In addition, a user can transmit his or her certificate directly
to other users. 

 If there is a large community of users, it may not be practical for all users to subscribe to the same CA.
Because it is the CA that signs certificates, each participating user must have a copy of the CA’s own public
key to verify signatures. This public key must be provided to each user in an absolutely secure (with respect
to integrity and authenticity) way so that the user has confidence in the associated certificates. 

A has obtained a certificate from certification authority X1 and B has obtained a certificate from CA X2. 
If A does not securely know the public key of X2, then B’s certificate, issued by X2, is useless to A. A can read B’s
certificate, but A cannot verify the signature. 

However, if the two CAs have securely exchanged their own public keys, 
the following procedure will enable A to obtain B’s public key.

 Step 1: A obtains from the directory the certificate of X2 signed by X1. 
◦ Because A securely knows X1’s public key, A can obtain X2’s public key from its certificate and verify

it by means of X1’s signature on the certificate.



 Step 2: A then goes back to the directory and obtains the certificate of B signed by X2.
◦ Because A now has a trusted copy of X2’s public key, A can verify the signature and securely obtain B’s

public key. 

 All these certificates of CAs by CAs need to appear in the directory, and the user needs to know how they
are linked to follow a path to another user’s public-key certificate. X.509 suggests that CAs be arranged in
a hierarchy so that navigation is straightforward.

Figure taken from X.509, is an example of a hierarchy. 
 The connected circles indicate the hierarchical relationship among the CAs; 
 the associated boxes indicate certificates maintained in the directory for each CA entry. 

The directory entry for each CA includes two types of certificates:
■ Forward certificates: Certificates of X generated by other CAs
■ Reverse certificates: Certificates generated by X that are the certificates of other CAs

 When A has obtained these certificates, it can unwrap the certification path in sequence to recover a trusted
copy of B’s public key. Using this public key, A can send encrypted messages to B. 

 If A wishes to receive encrypted messages back from B, or to sign messages sent to B, then B will require
A’s public key, which can be obtained from the following certification path:

                  
 B can obtain this set of certificates from the directory, or A can provide them as part of its initial message to

B.

REVOCATION OF CERTIFICATES:
 Each certificate includes a period of validity, much like a credit card. 
 a new certificate is issued just before the expiration of the old one. 
 it may be desirable on occasion to revoke a certificate before it expires, for one of the following reasons.



1. The user’s private key is assumed to be compromised.
2. The user is no longer certified by this CA. Reasons for this include that the subject’s name has

changed, the certificate is superseded, or the certificate was not issued in conformance with the
CA’s policies.

3. The CA’s certificate is assumed to be compromised.  

 Each CA must maintain a list consisting of all revoked but not expired certificates issued by that CA,
including both those issued to users and to other CAs. These lists should also be posted on the directory. 

 Each certificate revocation list  (CRL) posted to the directory is  signed by the issuer  and includes the
issuer’s name, the date the list was created, the date the next CRL is scheduled to be issued, and an entry
for each revoked certificate. 

 Each entry consists of the serial number of a certificate and revocation date for that certificate. Because
serial numbers are unique within a CA, the serial number is sufficient to identify the certificate.

When a user receives a certificate in a message, the user must determine whether the certificate has been revoked. 
The user could check the directory each time a certificate is received. 
To avoid the delays (and possible costs) associated with directory searches, it is likely that the user would maintain a
local cache of certificates and lists of revoked certificates.

X.509 Version 3
The X.509 version 2 format does not convey all of the information that recent design and implementation experience
has shown to be needed. 
Lists the following requirements not satisfied by version 2.

1. The subject field is inadequate to convey the identity of a key owner to a public-key user. 

2. The subject field is also inadequate for many applications

3. There is a need to indicate security policy information. 

4. There is a need to limit the damage that can result from a faulty or malicious CA by setting constraints on
the applicability of a particular certificate.

5. It is important to be able to identify different keys used by the same owner at different times. 

        



 Version 3 includes a  number of  optional  extensions that  may be added to the version 2 format.  Each
extension consists of an extension identifier, a criticality indicator, and an extension value. The criticality
indicator indicates whether an extension can be safely ignored. If the indicator has a value of TRUE and an
implementation does not recognize the extension, it must treat the certificate as invalid.

 The certificate extensions fall into three main categories: key and policy information, subject and issuer
attributes, and certification path constraints.

KEY AND POLICY INFORMATION:
 A certificate policy is a named set of rules that indicates the applicability of a certificate to a particular

community and/or class of application with common security requirements. 
 For  example,  a  policy  might  be  applicable  to  the  authentication  of  electronic  data  interchange  (EDI)

transactions for the trading of goods within a given price range. 
 This area includes:

■ Authority key identifier: Identifies the public key to be used to verify the signature on this certificate or CRL. 
■ Subject key identifier: Identifies the public key being certified. Useful for subject key pair updating. 
■ Key usage: Indicates a restriction imposed as to the purposes for which, and the policies under which, the certified
public  key  may  be  used.  May  indicate  one  or  more  of  the  following:  digital  signature,  nonrepudiation,  key
encryption, data encryption, key agreement, CA signature verification on certificates, CA signature verification on
CRLs.
■ Private-key usage period: Indicates the period of use of the private key corresponding to the public key. 
■ Certificate policies: Certificates may be used in environments where multiple policies apply. 
■ Policy mappings: Used only in certificates for CAs issued by other CAs. Policy mappings allow an issuing CA to
indicate that one or more of that issuer’s policies can be considered equivalent to another policy used in the subject
CA’s domain.

CERTIFICATE SUBJECT AND ISSUER ATTRIBUTES:
 These extensions support alternative names, in alternative formats, for a certificate subject or certificate

issuer and can convey additional information about the certificate subject to increase a certificate user’s
confidence that the certificate subject is a particular person or entity. 

 For example, information such as postal address, position within a corporation, or picture image may be
required.

 The extension fields in this area include:
■ Subject alternative name: Contains one or more alternative names, using any of a variety of forms. This field is
important for supporting certain applications, such as electronic mail, EDI, and IPSec, which may employ their own
name forms.
■ Issuer alternative name: Contains one or more alternative names, using any of a variety of forms.
■ Subject directory attributes: Conveys any desired X.500 directory attribute values for the subject of this certificate.

CERTIFICATION PATH CONSTRAINTS :
 These extensions allow constraint specifications to be included in certificates issued for CAs by other CAs.

The constraints may restrict the types of certificates that can be issued by the subject CA or that may occur
subsequently in a certification chain. 

 The extension fields in this area include:
■ Basic constraints: Indicates if the subject may act as a CA. If so, a certification
path length constraint may be specified.
■ Name constraints: Indicates a name space within which all subject names in
subsequent certificates in a certification path must be located.
■ Policy constraints: Specifies constraints that may require explicit certificate policy identification or inhibit policy
mapping for the remainder of the
certification path.





































































CLOUD SECURITY 

 

Cloud security is a discipline of cyber security dedicated to securing cloud computing systems. This includes keeping 

data private and safe across online-based infrastructure, applications, and platforms. Securing these systems involves 

the efforts of cloud providers and the clients that use them, whether an individual, small to medium business, or 

enterprise uses. 

 

Cloud providers host services on their servers through always-on internet connections. Since their business relies on 

customer trust, cloud security methods are used to keep client data private and safely stored. However, cloud security 

also partially rests in the client’s hands as well. Understanding both facets is pivotal to a healthy cloud security 

solution. 

 

At its core, cloud security is composed of the following categories: 

 Data security 

 Identity and access management (IAM) 

 Governance (policies on threat prevention, detection, and mitigation) 

 Data retention (DR) and business continuity (BC) planning 

 Legal compliance 

 

SCOPE 

 Physical networks — routers, electrical power, cabling, climate controls, etc. 

 Data storage — hard drives, etc. 

 Data servers — core network computing hardware and software 

 Computer virtualization frameworks — virtual machine software, host machines, and guest machines 

 Operating systems (OS) — software that houses 

 Middleware — application programming interface (API) management, 

 Runtime environments — execution and upkeep of a running program 

 Data — all the information stored, modified, and accessed 

 Applications — traditional software services (email, tax software, productivity suites, etc.) 

 End-user hardware — computers, mobile devices, Internet of Things (IoT) devices, etc. 

 

ENVIRONMENT 

Cloud environments are deployment models in which one or more cloud services create a system for the end-users 

and organizations. These segments the management responsibilities — including security — between clients and 

providers. 

The currently used cloud environments are: 

 Public cloud environments are composed of multi-tenant cloud services where a client shares a provider’s 

servers with other clients, like an office building or coworking space. These are third-party services run by 

the provider to give clients access via the web. 

 Private third-party cloud environments are based on the use of a cloud service that provides the client with 

exclusive use of their own cloud. These single-tenant environments are normally owned, managed, and 

operated offsite by an external provider. 

 Private in-house cloud environments also composed of single-tenant cloud service servers but operated 

from their own private data center. In this case, this cloud environment is run by the business themselves to 

allow full configuration and setup of every element. 

 Multi-cloud environments include the use of two or more cloud services from separate providers. These 

can be any blend of public and/or private cloud services. 

 Hybrid cloud environments consist of using a blend of private third-party cloud and/or onsite private cloud 

data center with one or more public clouds. 

 

 

     SERVICES 

 

https://www.kaspersky.com/resource-center/definitions/what-is-iot


 Software-as-a-Service (SaaS) cloud services provide clients access to applications that are purely hosted 

and run on the provider's servers. Providers manage the applications, data, runtime, middleware, and 

operating system. Clients are only tasked with getting their applications. SaaS examples include Google 

Drive, Slack, Salesforce, Microsoft 365, Cisco WebEx, Evernote. 

 Platform-as-a-Service cloud services provide clients a host for developing their own applications, which are 

run within a client’s own “sandboxed” space on provider servers. Providers manage the runtime, middleware, 
operating system. Clients are tasked with managing their applications, data, user access, end-user devices, 

and end-user networks. PaaS examples include Google App Engine, Windows Azure. 

 Infrastructure-as-a-Service (IaaS) cloud services offer clients the hardware and remote connectivity 

frameworks to house the bulk of their computing, down to the operating system. Providers only manage core 

cloud services. Clients are tasked with securing all that gets stacked atop an operating system, including 

applications, data, runtimes, middleware, and the OS itself. In addition, clients need to manage user access, 

end-user devices, and end-user networks. IaaS examples include Microsoft Azure, Google Compute Engine 

(GCE), Amazon Web Services (AWS). 

 

 

WORKING 
 

          Data security is an aspect of cloud security that involves the technical end of threat prevention. Tools and 

technologies allow providers and clients to insert barriers between the access and visibility of sensitive data. Among 

these, encryption is one of the most powerful tools available. Encryption scrambles your data so that it's only readable 

by someone who has the encryption key. If your data is lost or stolen, it will be effectively unreadable and 

meaningless. Data transit protections like virtual private networks (VPNs) are also emphasized in cloud networks. 

         Identity and access management (IAM) pertains to the accessibility privileges offered to user accounts. 

Managing authentication and authorization of user accounts also apply here. Access controls are pivotal to restrict 

users — both legitimate and malicious — from entering and compromising sensitive data and systems. Password 

management, multi-factor authentication, and other methods fall in the scope of IAM. 

         Governance focuses on policies for threat prevention, detection, and mitigation. With SMB and enterprises, 

aspects like threat intel can help with tracking and prioritizing threats to keep essential systems guarded carefully. 
However, even individual cloud clients could benefit from valuing safe user behavior policies and training. These 

apply mostly in organizational environments, but rules for safe use and response to threats can be helpful to any user. 

          Data retention (DR) and business continuity (BC) planning involve technical disaster recovery measures in 

case of data loss. Central to any DR and BC plan are methods for data redundancy such as backups. Additionally, 

having technical systems for ensuring uninterrupted operations can help. Frameworks for testing the validity of 

backups and detailed employee recovery instructions are just as valuable for a thorough BC plan. 

 

          Legal compliance revolves around protecting user privacy as set by legislative bodies. Governments have taken 

up the importance of protecting private user information from being exploited for profit. As such, organizations must 

follow regulations to abide by these policies. One approach is the use of data masking, which obscures identity within 

data via encryption methods. 
 

PREDICTIONS: 

 

1) Never leave the default settings 

unchanged. 

2) Never leave a cloud storage bucket open. 

3) Use strong passwords. 

4) Protect all the devices. 

5) Back up your data regularly. 

6) Protect from anti-virus. 

7) Avoid accessing your data on public wifi 

SERVICES

https://www.kaspersky.com/password-manager
https://www.kaspersky.com/password-manager
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